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ABSTRACT
We show that an analogy between crowding in fluid and jammed phases of hard spheres captures the density dependence of the kissing
number for a family of numerically generated jammed states. We extend this analogy to jams of mixtures of hard spheres in d = 3 dimensions
and, thus, obtain an estimate of the random close packing volume fraction, ϕRCP, as a function of size polydispersity. We first consider
mixtures of particle sizes with discrete distributions. For binary systems, we show agreement between our predictions and simulations using
both our own results and results reported in previous studies, as well as agreement with recent experiments from the literature. We then apply
our approach to systems with continuous polydispersity using three different particle size distributions, namely, the log-normal, Gamma,
and truncated power-law distributions. In all cases, we observe agreement between our theoretical findings and numerical results up to
rather large polydispersities for all particle size distributions when using as reference our own simulations and results from the literature.
In particular, we find ϕRCP to increase monotonically with the relative standard deviation, sσ , of the distribution and to saturate at a value
that always remains below 1. A perturbative expansion yields a closed-form expression for ϕRCP that quantitatively captures a distribution-
independent regime for sσ < 0.5. Beyond that regime, we show that the gradual loss in agreement is tied to the growth of the skewness of size
distributions.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0137111

I. INTRODUCTION

Hard spheres represent one of the most important reference
system in statistical mechanics. This system admits a single con-
trol parameter, the fraction of space occupied by the particles, or
volume fraction, ϕ, and was initially devised to model the short-range
repulsive forces of an idealized atomic liquid. On the theoretical side,
trailblazing simulations by Alder and Wainwright,1 as well as the-
oretical work by Kirkwood and co-workers,2–4 led to a wide array
of predictions on the behavior of equilibrium hard spheres that

paved the way for models of more complicated liquids. Pioneering
experiments by Pusey, van Megen, and Vrij,5,6 since followed by oth-
ers,7 showed that colloidal systems, such as polymethylmethacrylate
(PMMA) and silica particles coated with polymers, can be approxi-
mately modeled as hard-sphere fluids. Overall, the phase behavior of
hard spheres has been studied in great detail, and by now, it can be
said to be well understood.8,9

When slowly compressing a hard-sphere fluid at constant
temperature, a thermodynamically stable liquid branch can be
defined from the ideal gas limit, ϕ = 0, until freezing, ϕfreeze ≈ 0.492.
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Further slow compression yields an entropy-driven first-order phase
transition5,10–12 to a solid (crystalline) branch that extends from
the melting packing fraction, ϕmelt ≈ 0.55, to the face-centered-
cubic (fcc) close-packing, ϕfcc = π

6

√
2 ≈ 0.7405, shown in Fig. 1. As

already predicted by Kepler in his conjecture13 and formally proved
by Hales,14–16 the fcc crystal coincides with the densest ordered
arrangement of hard spheres in 3d. In this arrangement, the pressure
diverges since the system cannot be further compressed.

It is well-known that by compressing hard spheres quickly,
crystallization can be avoided17–19 so that the maximum close-
packing density, ϕfcc, is not reached, and instead, the particles “jam”
in a disordered configuration at a lower volume fraction. Just like
the fcc crystal, these jammed configurations exhibit a diverging
pressure, as further compression would lead to overlaps or defor-
mation.20 The determination of the so-called random close pack-
ing (RCP) density, ϕRCP, defined as the highest packing fraction
for a “disordered” arrangement of hard spheres, remains an open
problem.13,21,22 In a classic experiment,23 Bernal and Mason found
that when equally sized spheres are poured and shaken in a con-
tainer, they occupy a volume fraction ϕRCP ≈ 0.64, a number that
they conjectured to be “mathematically determinable.” An example
of such a packing is shown in Fig. 1. Since then, measurements of
ϕRCP have been reproduced in a myriad of experiments and numer-
ical simulations, yet there is no consensus as to what the precise
definition of RCP is.13,24–26

In both experiments and in simulations, dense amorphous
packings of hard spheres are produced by nonequilibrium dynami-
cal processes, whose states are challenging to predict analytically.27,28

To overcome this difficulty, many authors have proposed that the
RCP states correspond to the infinite-pressure limit of metastable
glassy states,29–34 thus reducing a dynamical problem into a much
simpler equilibrium one. According to this view, when compressing
a hard-sphere liquid beyond the freezing packing fraction, ϕfreeze,
the pressure of the system first follows a metastable extension of
the liquid branch and then becomes trapped in a glassy state, an
amorphous solid state in which particles vibrate around random ref-
erence positions. Upon further compression, the amplitudes of the
vibrations eventually vanish and the pressure diverges as the sys-
tem jams in a random packing. Simulations showed that depending
on the compression rate, several glassy branches can arise from the
metastable continuation of the liquid branch above ϕfreeze and that

FIG. 1. Close packings of monodisperse hard spheres: fcc configuration (left) and
random packing with ϕ ≈ 0.644 (right) of monodisperse hard spheres.

different glasses can jam at different jamming densities.30,32 Simula-
tions and mean-field-level theory29,35,36 indicate that these jamming
densities live in a finite interval, between a lower bound obtained
by compressing the least stable glassy branch and an upper bound,
usually called the glassy close-packing (GCP) density, defined as the
densest possible jam with a glassy structure.

Alternative ways of thinking about random packings of
hard spheres have been proposed by Torquato, Stillinger, and
co-workers,37–39 Kamien and Liu,24 and most recently Wilken et al.26

Torquato, Stillinger, and collaborators argued that the mechanical
(compression) route to RCP is ill defined because one can always
increase the volume fraction by locally ordering the particles.37,40,41

Motivated by this observation, they introduced the alternative
notion of a maximally random jammed (MRJ) state correspond-
ing to some minimum value of a structural order parameter, such
as bond-orientational order.42 Adopting this criterion in numerical
simulations, Rintoul and Torquato,38,39 measured precise values of
the pressure for the hard-sphere system on the metastable continua-
tion of the liquid branch above the freezing point, ϕfreeze. They found
no evidence of thermodynamically stable amorphous (glassy) states
and observed a diverging pressure at ϕRCP ≈ 0.644.38,39

Kamien and Liu24 conjectured a different definition for ϕRCP
as the endpoint of the metastable extension of the equilibrium liq-
uid branch. More precisely, they linked the rate at which accessible
states disappear to the pressure of the metastable liquid and found
that they both diverge at ϕRCP ≈ 0.64, in accordance with previ-
ous numerical fits of the divergence of the pressure of the liquid
branch.43,44 In both approaches, ϕRCP is identified with the infinite
pressure limit of a continuation of the equilibrium liquid branch, in
agreement with ideas of Aste and Coniglio45 and with recent work
by Katzav et al.46

Finally, recent work by Wilken et al. has proposed that RCP
could be found as a dynamical critical point in an absorbing-state
model, Biased Random Organization (BRO).26

We propose to define ϕRCP as a special point in the ensemble
of jammed states, defined as follows, and sketched in Fig. 2. In the
Torquato–Stillinger picture, for each density at which stable jammed
states exist, one can rigorously define a conditional maximally ran-
dom jammed state with respect to a given observable ψ. This is an
extension of the usual concept of MRJ, which defines a single den-
sity, to a whole MRJ-line (solid red line in Fig. 2), extending from
the density of the loosest stable packing (LSP), which is generally
assumed to be part of a small family of defective crystalline states,13,47

all the way to the densest packing, fcc. A particularly simple choice
of observable (sometimes used in the MRJ picture48,49) is the aver-
age number of contacts, or kissing number, z. In addition to being
convenient, this choice is physically motivated by the fact that all
the interpretations of RCP given above agree on the fact that RCP
should be a point in the ensemble of jammed states where rigidity
vanishes or, equivalently,50 where the packing is isostatic, z = 6 in
3d. One can then seek a special density, which we shall henceforth
call RCP, as the densest isostatic jammed packing, i.e., the right-most
point on the MRJ line in Fig. 2.

Since the “minimally coordinated” jammed packings for each
density (i.e., on the MRJ-line) are, in principle, those closest in
structure to liquid states, we adopt the viewpoint of Ref. 51 and
model the kissing number by well-known analytical approximations
for the equation of state (EOS) of a liquid, thereby invoking an
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FIG. 2. Defining RCP in the (ϕ, z) plane. Sketch of the convex hull of the ensem-
ble of stable frictionless jammed packings (hashed gray region) in the packing
fraction–kissing number plane. The least coordinated jam at every density form
the MRJ-line for kissing numbers (solid red line). It starts at the loosest stable
packing, here called LSP (teal dot), and ends at the densest possible packing frac-
tion, fcc (blue dot). Between these extreme densities, there is a plateau of isostatic
packings, which ends at a finite value, that we here use as a definition of RCP
(purple dot). Past RCP, the kissing number picks up and reaches 12 at fcc.

analogy between the crowding of liquid and jammed states. Like in
all simple calculations, we make an assumption (here about crowd-
ing) that is wrong in detail, but we show that it captures critical
aspects of the physics, thus leading to nontrivial predictions that we
validate by comparison with simulations and experiments.

In Sec. II, we back the picture presented above in the case of
monodisperse jammed packings by showing that the number of con-
tacts, z, empirically observed on the MRJ-line qualitatively agrees
with predictions from the ansatz of Ref. 51. Then, taking advantage
of known extensions of liquid-state equations of state to polydis-
perse systems, we extend the framework of Ref. 51 to predict the
value of ϕRCP as a function of polydispersity in hard-sphere fluids
in 3d. While it is well known that polydisperse systems may pack to
higher volume fractions than monodisperse systems (see the exam-
ple in Fig. 3), deriving good approximations for the values for ϕRCP as
a function of the size polydispersity is not only of theoretical interest
but also of practical importance since these predictions can be used
to guide experiments.52

In Sec. III A, we show that our approach is reasonable for
discrete distributions of particle sizes using the example of a bidis-
perse mixture. Since this system has been studied extensively, we
compare our predictions to simulations of our own, as well as to
data from a number of past computational34,53–55 and experimental82

works. Then, in Sec. III B, we extend our approach to contin-
uous polydispersities. We assume the diameter of the spheres to

FIG. 3. Random packing of polydisperse hard spheres. Random packing of
polydisperse hard spheres with diameters drawn from the truncated power law
considered in this paper, (sσ ≈ 0.5,ϕ ≈ 0.719).

follow three different size distributions, which have been widely
employed to describe polydisperse colloidal suspensions in numer-
ical simulations.30,57–59 We start by assuming the particle diameter
to follow a log-normal distribution,60 for which results from numer-
ical simulations are available in the literature.57 We then consider
the particle diameter to follow a Gamma distribution, also known
as Schulz distribution in this context,61 and a truncated power-law
distribution recently introduced by Berthier and co-workers.58,59 In
all three cases, we show that ϕRCP increases monotonically with
the relative standard deviation sσ of the distribution. We com-
pare the theoretical predictions both to data from the literature
and to our own simulations. Finally, by a perturbative expansion,
we arrive at a closed form solution that captures a distribution
independent regime for relative standard deviation sσ < 0.5 and
perform an analysis, showing that the gradual loss of agreement
for sσ > 1 can be associated with the growth of skewness in the
distributions.

We end by drawing our conclusions in Sec. IV.

II. THEORY
A. Monodisperse systems

A property of random jammed states is that they are rigid,
meaning that they exhibit a positive shear modulus, G. For a disor-
dered d-dimensional (with d = 2, 3) system of compressible spheres,
the shear modulus can be shown to grow with coordination number,
z, as G ∼ z − 2d.50 Thus, for this class of systems, mechanical sta-
bility arises at a critical coordination number zc ≡ 2d, in agreement
with Maxwell’s isostaticity criterion. The system is fluid for z < zc
and jammed for z ≥ zc.

The value z = 6 for hard spheres at RCP was independently
reported in various contexts. It was advanced as a result of ana-
lytical predictions stemming from the replica method.25 Numerical
simulations of fast compressions of finite-pressure glassy states
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confirmed this result over the whole range of replica-symmetry-
breaking jammed states that lie on the so-called “J-line.”35,36 Iso-
staticity was also empirically observed in simulations aiming to
reach RCP while resorting to various dynamical processes unre-
lated to glassy physics.26,62 In this context, isostaticity has been
observed in correspondence with the hyperuniformity of the disor-
dered sphere packings, meaning that long-range density fluctuations
become anomalously suppressed or, equivalently, that the struc-
ture factor vanishes at small wavevectors as S(∣k∣→ 0) = ∣k∣α, with
α ≈ 1/4.26,63 Since hyperuniformity has been proposed as a prereq-
uisite of RCP,62 the observation that hyperuniformity and z = 6 were
observed at the same time lends credence to the validity of the
isostaticity criterion.

Thus, using isostaticity, zc ≡ 6, as a necessary (but not suffi-
cient) criterion for RCP, we seek an ansatz for z(ϕ) along the MRJ
line of the jammed domain. To this end, we introduce the radial
distribution function (RDF), g(r), representing the probability of
finding (the center of) a particle in a shell of thickness dr at a radial
distance r from (the center of) a test particle placed at the origin of
the reference frame.9 By definition of the RDF, the average number
of spheres lying in the range r + dr is given by dz = 4πρg(r)r2dr. By
introducing the quantity σ+ ≡ σ + ϵ, where ϵ→ 0+ is an arbitrarily
small number, the average number of particles in contact with (just
touching) the test particle is given by

z = 4πρ∫
σ+

0
g(r)r2dr. (1)

The key point of the method introduced in Ref. 51 is to treat
f (r) = 4πρg(r)r2/(N − 1) as a partially continuous (PC) probability
distribution function (PDF).

In probability theory, besides fully continuous and fully dis-
crete PDFs, one can define partially continuous distributions, also
known as mixed distributions.64 As an example of a fully discrete
distribution, the PDF fd(x) of a distribution consisting of a set
of possible outcomes xi = {x1, . . . , xn} with corresponding proba-
bilities pi = {p1, . . . , pn} can be written as f d(x) = ∑n

i=1 piδ(x − xi).
A partially continuous (PC) distribution can be written as64

f PC(x) = c(x) +∑n
i=1 piδ(x − xi), where c(x) is the continuous part

and the second term is the discrete part. Upon normalizing to 1
over the relevant domain, ∫ ∞0 f PC(x)dx = 1, fPC(x) becomes a valid
PDF.65

In short, we write the RDF as

g(r) = gc(r) + gBC(r), (2)

where gBC(r) is the continuous part describing the probability of
finding particles in the region of space beyond contact (BC) r > σ+,
while gc(r) is the discrete part describing the probability of having
nearest neighbors in direct contact with the test particle. We then
write gc(r) as

gc(r) = g0g(σ;ϕ)δ(r − σ), (3)

where g0 is a normalization length, while g(σ; ϕ) is the so-
called (dimensionless) contact value of the RDF at packing fraction
ϕ, and represents the probability of finding particles at exactly
r = σ. The total g(r) given by Eq. (2) obeys the usual condition
∫ ∞0 4πρg(r)r2dr = N − 1, imposed by normalization. This separa-
tion of the g(r) of jammed states of hard spheres into a continuous

and a discrete part, illustrated in Fig. 4, is consistent with the
previous works.69–71

Upon insertion of Eq. (3) into Eq. (2) and the resulting expres-
sion into Eq. (1), the coordination number z arising from the
particles in permanent contact with the test particle is given by

z = 24ϕ
g0

σ
g(σ;ϕ). (4)

If g0/σ and g(σ; ϕ) were known on the branch of maximally
random jammed states, the RCP density ϕRCP could be found by
solving Eq. (4) while imposing the critical condition for the onset
of mechanical stability z = zc ≡ 6. However, jammed states are noto-
riously hard to model due to their non-equilibrium nature. In order
to use Eq. (4) to predict RCP, in the absence of a better theory, we
introduce an analogy with equilibrium, which has also the benefit of
yielding analytically tractable equations.

In equilibrium hard spheres, due to the virial theorem, the
value geq(σ; ϕ) of the RDF at contact provides the pressure p of the
uniform fluid as a function of its packing fraction ϕ ≡ 4

3π(σ/2)
3ρ,

through the relation9,72,73

Z(ϕ) = 1 + 4ϕgeq(σ;ϕ), (5)

FIG. 4. Partially continuous RDF. Radial distribution function (RDF) g(r) of a sys-
tem of hard spheres with diameter σ in d = 3 dimensions at the random close
packing density ϕRCP. The orange curve, representing data obtained in the sim-
ulations introduced hereafter, is the continuous part gBC(r) of the RDF. We here
indicate the exponent from Ref. 66 (note that a slightly different exponent 0.4 was
discovered in Ref. 67 and appears in agreement with replica theory,68 distinguish-
ing between these values is beyond the scope of this paper). The thick vertical
arrow represents the Dirac delta in the discrete part gc(r) of the RDF [see Eq. (3)].
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where Z ≡ p/ρkBT is the so-called compressibility factor, ρ is the
number density, and T and kB are the temperature and the Boltz-
mann constant, respectively. This expression (that is exact for equi-
librium liquids) can, of course, not be used directly for jammed
states. In particular, geq is a regular function of r for all r > σ so that
geq(σ; ϕ) is fundamentally different from g(σ; ϕ), the amplitude
of the singular part of the jammed RDF at contact. This difference is
consistent with the fact that the pressure has to diverge in collectively
jammed states.24,37–39,45

By analogy with equilibrium states, to qualitatively describe
local crowding in hyperstatic, maximally random jammed states, we
propose to write

g(σ;ϕ)∝ geq(σ;ϕ) = Z(ϕ) − 1
4ϕ

, (6)

with Z being an approximate analytical equation of state of equilib-
rium hard spheres. We list the expressions for Z used in this paper
in Appendix A. Injecting Eq. (6) into Eq. (4) yields

z = 6ϕC0(Z(ϕ) − 1), (7)

where C0 ≡ g0/σ is a constant number to be determined. Intuitively,
this ansatz assumes that the most random branch of jammed states
undergoes crowding in a way that would be qualitatively similar to
an equilibrium liquid.

The last ingredient needed to solve Eq. (7) and, thus, to find
an expression for ϕRCP is the value of the constant factor C0. To
fix its value, we insert in Eq. (7) a known (ϕref, zref) combina-
tion, typically from a perfect crystalline packing, as well as a choice
of equation of state. This procedure can be seen as an effective
“boundary condition” in our problem. In Ref. 51, the author chose
fcc ordering, i.e., a coordination number zfcc = 12 and a packing
fraction ϕCP

fcc = π/3
√

2 ≈ 0.74.13 This choice is justified by the pic-
ture that maximally random jammed states have to connect RCP to
the fcc point (see Fig. 2). Another suggestion74 has been to use per-
fect bcc ordering, identified by the coordination number zbcc = 8 and
packing fraction ϕCP

bcc = π
√

3/8 ≈ 0.68.
In order to check how reasonable our ansatz is, we generate 105

jammed packings of N = 108 particles using the Torquato–Jiao (TJ)
algorithm,48 which was designed to generate strictly jammed pack-
ings that are as random as possible (see Appendix D for details on
the algorithm). The reason for using a small number of particles
and a large number of compressions is that the distribution of final
jammed densities of such compression algorithms is typically heav-
ily peaked around ϕ = 0.64 so that measuring configurations in the
regime leading up to fcc requires a lot of compressions. At the end
of each compression, we measure the average kissing number in the
system, as well as the final packing fraction, and we report these val-
ues in Fig. 5. The lowest jammed densities are obtained at roughly
ϕ ≈ 0.6, as reported in previous studies,48 while the densest packings
are found at the fcc density. As described in similar simulations of
hard disks,49 a roughly flat region indicates that only isostatic pack-
ings are found at the lowest observed jammed densities. Between
these two regimes, the kissing number picks up, joining the z = 6
region and the z = 12 point.

To give a better idea of the statistics of points within the scat-
ter plot in Fig. 5, we show binned averages as a black line and

FIG. 5. Kissing number of maximally random jams. Scatter plot of the kissing num-
ber against the final packing fraction for 105 compressions of N = 108 particles
using a Torquato–Jiao algorithm. Each open gray square represents one compres-
sion. Black disks are binned averages, and the gray area represent the confidence
interval around it. Colored disks represent three known special points: fcc (blue),
bcc (green), and the Parisi–Zamponi29 estimate of GCP in d = 3 (red). Colored
lines represent our ansatz when using fcc (blue) or bcc (green) boundary condi-
tions to set C0. Solid lines were obtained, from left to right, using the PYv, CS,
and PYc equations of state. The dashed line was obtained using the Young–Alder
equation of state.

binned standard deviations as a gray area. While only rare fluctu-
ations around isostaticity are observed up to ϕ ≈ 0.67, the average
kissing number picks up after that value, with a rather large spread
until fcc, that could be attributed to finite-size effects. On this plot,
we also represent three special points as colored disks: fcc, in blue
at (π/

√
18, 12); bcc, in green at (π

√
3/8, 8); and the 3d value of

the Glass Close-Packing (GCP) predicted by mean-field theory29 at
(0.6836, 6). Note that the GCP point roughly matches with the point
where the lower bound of the scatter plot picks up from z = 6. More-
over, the bcc point seems to lie on the upper limiting curve around
the observed points. Finally, we plot predictions from our ansatz as
solid lines, in blue when fcc is used to determine C0 and in green
when bcc is used instead. The solid lines are obtained using (from
left to right on the plot) the PYv, CS, and PYc equations of state,
while the dashed line was obtained using the YA expression (see
Appendix A for their expressions).

These different predictions are spread in a rather broad region,
but they follow the right qualitative trend compared to data—which
was not guaranteed, since the analytical equations of state used
to draw them are not supposed to describe this regime. For each
boundary condition and equation of state, a value of C0 as well as
a closed-form expression for ϕRCP can be obtained. The obtained
values are summarized in Table I.
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TABLE I. Normalization factor C0 [see Eq. (7)] and random close packing density
ϕRCP of a monodisperse fluid of hard spheres with diameter σ, in d = 3 dimensions,
obtained for different approximations [Percus–Yevick with either the virial (PYv) or
compressibility (PYc) equation of state, Carnahan–Starling (CS), and Young–Alder
(YA)] for the contact value g(σ) of the radial distribution function and different con-
figurations (fcc or bcc) as boundary conditions. Note that the YA equation diverges at
fcc so that it is not useable with fcc as a reference.

fcc PYv CS PYc YA

102 ⋅ C0 3.318 94 1.874 16 1.539 09 N/A
ϕRCP 0.658 963 0.677 376 0.680 86 N/A

bcc PYv CS PYc YA

102 ⋅ C0 3.740 68 2.429 46 2.067 16 3.736 73
ϕRCP 0.643 320 0.650 594 0.652 187 0.660 868

Note that it is not clear at this stage whether any of these
approximations is objectively better than the others, since there
is no ground truth for the value of RCP, nor for the branch of
interest of z(ϕ), which in the numerical measurements of Fig. 5 is
probably marred by finite-size effects. More specifically, all tested
equations of state yield values in a reasonable interval compared to
the literature,13,26,79,98–103 suggesting that models of z(ϕ) that travel
close to fcc and bcc would also yield reasonable values. For instance,
as far as the value of the monodisperse RCP density alone is con-
cerned, one could also use a completely unphysical fit for z(ϕ).
An extreme example of this would be, say, a linear approximation
going through both fcc and bcc: this completely unjustified approx-
imation would lead to yet another reasonable value in closed form,
ϕRCP = π(9

√
3 − 4
√

2)/48 ≈ 0.65.
However, we shall show in Secs. II B and III that there is a major

advantage in using an actual equilibrium equation of state as a model
for crowding. In particular, since the equations of states of monodis-
perse hard spheres have been extended to polydisperse hard spheres,
there is a natural extension of this computation to polydisperse sys-
tems, which we shall show correctly captures the evolution of ϕRCP
with increasing polydispersity.

B. Polydisperse systems
In order to extend this theoretical framework to polydisperse

systems, we consider an m-component mixture of additive hard
spheres in d = 3 dimensions. We call σij = 1

2(σi + σj) the contact dis-
tance between a sphere of species i and a sphere of species j, where
σii ≡ σi is the diameter of a sphere of species i. We indicate the num-
ber fraction of species i with xi = ρi/ρ, where ρ is the number density
of the mixture, while ρi is the number density of spheres of species i.
Finally, we define ⟨σn⟩ ≡ ∑m

i=1 xiσn
i such that the packing fraction of

the system is given by ϕ = πρ⟨σ3⟩/6.
To predict the RCP density, ϕRCP, of a mixture as we did above,

Eq. (4) needs to be suitably modified. The mean number of contacts,
zij, between particles of species i and those of species j is linked to the
partial RDF, gij, restricted to ij pairs, through

zij = 4πρ

σ+ij

∫
0

drr2gij(r). (8)

Like in the monodisperse case, the only part of gij that participates
in the kissing number is the contact value gij,c so that

zij = 24ϕ
σ2

ij

⟨σ3⟩ gij,c(σij;ϕ). (9)

We then write the value of the species-averaged kissing number,
⟨z⟩, as

⟨z⟩ = 24ϕ
m

∑
i,j

xixj
σ2

ij

⟨σ3⟩ gij,c(σij;ϕ). (10)

Finally, one needs to assume an expression for gij,c. The latter should
be i↔ j symmetric and converge to its monodisperse expression,
g0 g(σ; ϕ), in the limit of a single species, which is attained either
by enforcing that m = 1 or by imposing that all diameters are equal,
σi = ⟨σ⟩. A simple functional form that verifies all of the above is

gij,c(σij;ϕ) ≡
σij

⟨σ⟩ g0(⟨σ⟩)gij(σij;ϕ), (11)

which yields the expression

⟨z⟩ = 24ϕ
g0

⟨σ⟩
m

∑
i,j

xixj
σ3

ij

⟨σ3⟩ gij(σij;ϕ). (12)

This last equation is consistent with known expressions of the
compressibility factor Z(m) (and therefore the species-averaged pair
correlation function at contact appearing in the virial theorem, g(m)eq )
of equilibrium polydisperse hard spheres,8,75–77

g(m)eq (σ;ϕ) ≡ Z(m)(ϕ) − 1
4ϕ

=
m

∑
i=1

m

∑
j=1

xixj
σ3

ij

⟨σ3⟩ gij(σij;ϕ). (13)

All in all, the analogy between least-coordinated jammed packings
and equilibrium fluids invoked in the monodisperse case naturally
generalizes to the polydisperse case as

⟨z⟩ = 6C0(Z(m)(ϕ) − 1). (14)

Furthermore, the mechanical stability criterion still requires iso-
staticity at the level of the average number of contacts, ⟨z⟩ = zc ≡ 6,
so that the only change between monodisperse and polydisperse
packings in our approach is the equilibrium equation of state used
in the analogy.

This result can be further generalized to the case of a contin-
uously polydisperse system of hard spheres whose diameters follow
a continuous distribution f (σ) by considering the limit m→∞. In
this case, Eq. (13) becomes78

g(m→∞)eq (σ;ϕ) ≡ Z(m→∞)(ϕ) − 1
4ϕ

= 1
8⟨σ3⟩∫

∞

0
dσ∫

∞

0
dσ′ f (σ) f (σ′)(σ + σ′)3g(σ,σ′;ϕ),

(15)

where now ⟨σn⟩ = ∫ ∞0 dσ f (σ)σn. Note that Eq. (13) for the m-
component mixture can be recovered by taking f (σ) = ∑m

i=1 xi
δ(σi − σ).
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The protocol used in this paper to compute the RCP density,
ϕRCP, of a polydisperse hard-sphere system then goes as follows: We
use an approximate expression for the EOS, Z(m→∞)(ϕ), of the sys-
tem under study, which yields an estimate of g(m→∞)(ϕ) through
Eq. (15). By analogy with the monodisperse case, we then find ϕRCP
by substituting Z(m→∞)(ϕ) into Eq. (14) and imposing the critical
condition for jamming, ⟨z⟩ = zc ≡ 6. In other words, we solve

1 = C0(Z(m→∞)(ϕRCP) − 1), (16)

where since Eq. (15) correctly reduces to Eq. (5) in the limit of
a one-component system, we use the values in the upper rows
of Table I for the normalization factor C0. The equations of
states used in the polydisperse case are the Boublík–Mansoori–
Carnahan–Starling–Leland (BMCSL), extended Carnahan–Starling
(eCS), and extended Percus–Yevick (ePY) equations. ZBMCSL(ϕ),
ZeCS(ϕ), and ZePY(ϕ) are defined in Appendix A.

C. Strategy recap
The strategy we propose to predict ϕRCP in a polydisperse

hard-sphere system can be summarized as follows: First, given a
size distribution f (σ), we derive an approximate analytical EOS
Z(m→∞)(ϕ) from either Eqs. (A4) or (A5). From this EOS, we deduce
an estimate of the averaged (over the size distribution) contact
value of the radial distribution function for the polydisperse system
through Eq. (15),

g(m→∞)eq (σ,ϕ) ≡ Z(m→∞)(ϕ) − 1
4ϕ

.

Furthermore, we compute the value of C0 using the monodisperse
limit of the EOS, Z(ϕ), and some known combination of ϕref and
zref for the monodisperse fluid by solving

C0 =
zref

6(Z(ϕref) − 1) .

Finally, we insert Z(m→∞) and C0 into Eq. (14) and impose ⟨z⟩ = zc
≡ 6. In the end, an estimate of ϕRCP is obtained by solving

1 = C0(Z(m→∞)(ϕRCP) − 1). (17)

Note that since the compressibility factor of the liquid branch is typ-
ically a strictly growing function of the packing fraction, Z(m→∞) can
be inverted and this equation admits a single solution.

III. RESULTS
In this section, we present predictions for ϕRCP obtained using

the framework of Sec. II C, first in the case of discrete polydisper-
sity (Sec. III A) and then in the case of a continuous distribution of
particle diameters (Sec. III B). Our predicted values for each size dis-
tribution are compared to numerical data, some adapted from pre-
vious numerical work and some obtained ourselves using the same
method as in Ref. 79, namely, a modified Lubachevsky–Stillinger
(LS)80,81 compression algorithm that enables to reach large pack-
ing fractions in random packings (see Appendix D for details of
the simulations). Where available, we also compare to experimental
data.82

A. Discrete polydispersity (bidispersity)
We start by assuming the particle diameter σ to follow a dis-

crete probability distribution. More specifically, in order to compare
our results with those present in the literature,34,53–56 we consider
the particle diameter to follow a bidisperse distribution. The system
then contains N1 spheres with diameter σ1 and N2 = N −N1 spheres
with diameters σ2. Introducing the number fraction of each species,
x1,2 ≡ N1,2/N, the corresponding size distribution can be written as

f (σ) = x1δ(σ1 − σ) + x2δ(σ2 − σ). (18)

The nth moment ⟨σ⟩ ≡ ∫ ∞−∞ dσ f (σ)σn of the probability distribu-
tion (18) is given by

⟨σn⟩ = x1σn
1 + x2σn

2 . (19)

Insertion of Eq. (19) in ZBMCSL(ϕ), ZeCS(ϕ), and ZePY(ϕ) intro-
duced in Sec. II B and defined in Appendix A allows us to
find three distinct approximate analytical expressions for the
EOS Z(m=2)(ϕ) of this bidisperse system. The effect of the dis-
crete polydispersity on the system can be fully described by
the diameter ratio, σ1/σ2, and either one of the number frac-
tions x1,2. It is, however, common in the literature to use the
volume fractions of the species, η2 ≡ x2/(x2 + x1(σ1/σ2)3) and
η1 = 1 − η2, instead of the number fraction. For the rest of this
section, we adopt the same convention: we denote the species with
larger diameter with index 1 so that σ1/σ2 > 1 and plot the RCP den-
sity as a function of the volume fraction η2 of the species with the
smaller diameter.

First, we focus on the shift ΔϕRCP ≡ ϕRCP − ϕmono
RCP induced by

the discrete polydispersity on the RCP density of the pure sphere
fluid, ϕmono

RCP . In Fig. 6, we plotΔϕRCP as a function of the volume frac-
tion η2 of small spheres for several values of σ1/σ2 ∈ [1, 2]. We use
solid, dashed, and dotted-dashed lines to represent results obtained
when using the ZePY(ϕ), ZeCS(ϕ), and ZBMCSL(ϕ) approximations
for the EOS Z(m=2) (ϕ) of the system, respectively, with the bcc
configuration used as a boundary condition to determine C0. Open
points represent simulations from Ref. 34, while filled points are for
our own simulations. For all the considered size ratios, our theory
predicts the typical “triangular” shape of the obtained density as a
function of η2. Furthermore, a good match can be observed between
the numerical values and our predictions, with a disagreement of
the same order of magnitude as the fluctuations between numerical
sets of data. These fluctuations, as well as the quantitative disagree-
ment with our prediction, might have to do with the very small shifts
in the RCP density, which are hard to measure accurately using
finite numbers of particles. In fact, at size ratios very close to one,
the differences between reported values for monodisperse RCP are
typically of the same order of magnitude as the shift due to polydis-
persity, which is why we here choose to plot the shift with respect
to the monodisperse value. For the case σ1/σ2 = 2, we show that our
approach correctly captures the behavior of a binary granular system
recently studied experimentally in Ref. 82 and represented by black
star-shaped points in Fig. 6.

In Fig. 7, we now plot the absolute (namely, not relative) value
of ϕRCP as a function of η2 in the cases σ1/σ2 = 2 (top) and σ1/σ2 = 5
(bottom). For σ1/σ2 = 2, we show good agreement with simula-
tions over the whole range of volume fractions. For σ1/σ2 = 5, this
time, we report agreement for η2 > 0.2, but a rather strong deviation
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FIG. 6. Polydispersity-induced shift of RCP of a binary mixture of hard spheres.
Shifted random close packing density ΔϕRCP ≡ ϕRCP − ϕmono

RCP against the volume
fraction of spheres with diameter σ2 in a binary mixture with a fixed diameter
ratio σ1/σ2 = 1.2 (yellow), σ1/σ2 = 1.4 (red), σ1/σ2 = 1.5 (blue), and σ1/σ2 = 2
(black), respectively. In all cases full, dashed and dotted-dashed black lines
represent results obtained when using the ZePY(ϕ), ZeCS(ϕ), and ZBMCSL(ϕ)
approximations for the equation of state of the system, respectively, and the bcc
configuration as a boundary condition to determine C0. Open points represent
simulations from Ref. 34, while filled points are simulations of our own. Black
star-shaped points are results recently obtained in Ref. 82 for a binary granular
system.

between our prediction and data for η2 < 0.2, where our prediction
overestimates the packing fraction. The cause of this disagreement is
unclear, but it is worth mentioning that it is notoriously difficult to
produce stable random packings in that region, as the system tends
to form a jammed configuration of the large particles within which
smaller particles can roam freely.34 A different choice of the EOS
could also improve the agreement at large σ1/σ2.

Note that an EOS different from those used in this paper was
recently considered as part of an analogous calculation in Ref. 83.

B. Continuous polydispersity
Henceforth, we assume the particle diameter σ to follow a con-

tinuous probability distribution f (σ). We consider three different
functional forms for f (σ), which have been widely employed to
describe polydispersity in colloidal systems.30,57–59

We start by assuming the particle diameter σ to follow the log-
normal distribution,60 for which results from numerical simulations
are available in the literature.30,57 We use these numerical results to
test our theoretical findings. The log-normal distribution flog(σ) is
defined as60

f log(σ) =
1

σ
√

2πα2
e−(ln σ−μ)2

/2α2

, (20)

where α and μ are arbitrary parameters. The nth moment
⟨σn⟩ ≡ ∫ ∞−∞ dσ f log(σ)σn of flog(σ) is given by

FIG. 7. RCP of a binary mixture of hard spheres. Random close packing density
ϕRCP against the volume fraction of spheres with diameter σ2 in a binary mixture
with the fixed diameter ratio σ1/σ2 = 2 (top) and σ1/σ2 = 5 (bottom). Full, dashed,
and dotted-dashed black lines represent results obtained when using the ZePY(ϕ),
ZeCS(ϕ), and ZBMCSL(ϕ) approximations for the equation of state of the system,
respectively, and the bcc configuration as a boundary condition to determine C0.
Either in (top) and in (bottom) red points are simulations of our own, while yellow
and white points are data adapted from Refs. 53 and 54, respectively. Green points
are adapted from Ref. 56 in the top panel, while they are adapted from Ref. 55 in
the bottom panel . Blue points in the top panel are adapted from Ref. 34.

⟨σn⟩ = enμ+n2α2
/2, (21)

such that the average value is ⟨σ⟩ = eμ+α
2
/2 and the variance is

var[σ] ≡ ⟨σ2⟩ − ⟨σ⟩2 = eα
2
−1e2 μ+α2

. The relative standard deviation
can be written as
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slog
σ ≡

(⟨σ2⟩ − ⟨σ⟩2)1/2

⟨σ⟩ = (eα
2

− 1)1/2. (22)

Insertion of Eq. (21) in ZBMCSL(ϕ), ZeCS(ϕ), and ZePY(ϕ) approx-
imations introduced in Sec. II B and defined in Appendix A
yields three distinct approximate analytical expressions for the EOS
Z(m→∞)(ϕ) of our polydisperse system. It can be easily verified that
the Z(m→∞)(ϕ) thus obtained does not depend on the parameter μ
but only on the parameter α. As it is clear from Eq. (22), the rela-
tive standard deviation slog

σ of the flog(σ) distribution also depends
exclusively on α. It follows that the effect of the polydispersity on
the system can be fully described by either α or slog

σ for any arbitrary
value of μ.

In Fig. 8, we show the predicted RCP density, ϕRCP, against
the reduced standard deviation slog

σ . We use yellow, red, and blue
lines to indicate the ϕRCP obtained using the ZBMCSL(ϕ), ZeCS(ϕ)
and ZePY(ϕ) approximations for the EOS Z(m→∞)(ϕ) of the system,
respectively. Moreover, we use solid and dashed lines to represent
results obtained when the bcc and fcc configurations, respectively,
are used as a boundary condition to determine C0 ≡ g0/σ. We pre-
dict that ϕRCP increases monotonically with slog

σ , until a plateau is
reached. Taking either of the proposed EOS, Eqs. (A4) or (A5),
in the limit of infinite skewness and variance predicts a limiting
value of packing fraction, ϕlog

max = 1/(1 + C0) ≈ 0.97 − 0.98, which
reassuringly lies below the physical limit of ϕ = 1. The increase
in ϕRCP with the size polydispersity is in agreement with the fact
that when increasing polydispersity, smaller spheres typically fill the
voids created between neighboring larger spheres so that polydis-
perse hard-sphere fluids may reach larger packing fractions than
monodisperse fluids.84

These predictions are compared to both data from simulations
adapted from Ref. 57 (white squares) and to our own simulations
(black squares). First, we note that a monotonic increase in ϕRCP as
a function of slog

σ is also observed in simulations. Furthermore, in
the region slog

σ < 1, we find good agreement between our predictions
and results from both sets of simulations, as emphasized in the lower
panel of Fig. 8. Either choice of boundary condition (bcc or fcc) yield
the right form as a function of ΔϕRCP. The better agreement of the
bcc curves can be attributed to the fact that the typical states found
by the numerical compression protocols always lie below ϕRCP, as
defined in Fig. 2, which is better approximated by the fcc curve, as
shown in Fig. 5.

At larger polydispersities, there is growing disagreement
between our predictions and numerical data. We note that in
the large polydispersity regime, it is very challenging to write a
good approximate EOS so that previous work typically designed
piece-wise EOS to accommodate for large polydispersities,85 and
other choices of EOS than ours might work better at large slog

σ .
Furthermore, we note that it becomes increasingly challenging to
obtain dense random jammed states as the polydispersity increases.
This is illustrated, for instance, in Ref. 79, where slower and
slower compression is required to approach the densest random
packing as sσ increases. Therefore, simulation results with finite
compression rates always underestimate the actual maximal den-
sity, with an error that should become greater as the degree
of polydispersity increases. In summary, both the EOS and the

FIG. 8. RCP of log-normal-distributed hard spheres. Random close packing den-
sity ϕRCP against the reduced standard deviation slog

σ . Yellow, red, and blue
lines indicate results obtained when using the ZBMCSL(ϕ), ZeCS(ϕ) and ZePY(ϕ)
approximations for the equation of state of the system, respectively. Solid and
dashed lines represent results obtained when using the bcc and fcc configura-
tions, respectively, as a boundary condition to determine C0. White squares are
data from Ref. 57, while black squares are results from our own simulations. Top:
full range up to a final plateau. Bottom: zoom on the small polydispersity region.

numerical results become progressively less reliable as sσ grows
larger.

Having checked that our predictions hold for the log-normal
distribution, we also consider in Appendix B two other common
choices for f (σ), namely, a Gamma distribution and a truncated
power-law distribution. We again find good agreement between the
predicted and measured values for sσ < 1.
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C. Universal behavior at small polydispersity
It is worth noting that numerical data for all three

continuous size distributions display remarkably similar shifts,
ΔϕRCP ≡ ϕRCP − ϕmono

RCP , in the limit of small polydispersity, sσ < 0.5,
as illustrated in Fig. 9. In this figure, we also show data for a
binary mixture, which forms a loop around the same universal
trend. This similarity suggests that the shift of RCP only depends
on the second moment of the size distribution in the regime of small
polydispersity, an effect that can be captured analytically from our
approach. Consider the approximate EOS used to construct the eCS
and ePY expressions [Eq. (A5)]. In the limit of small polydisper-
sity, 1≫ var[σ]/⟨σ⟩2 ≫ skew[σ]/⟨σ⟩3, with skew[σ] ≡ ⟨(σ − ⟨σ⟩)3⟩
being the skewness of the distribution. We can approximate the EOS
by taking its zero-skewness limit and rewrite it as a function of sσ ,

Z(m→∞)(ϕ, sσ) ≈ Z(ϕ)(1 + s2
σ)(2 + 5s2

σ + s4
σ)

2(1 + 3s2
σ)2

+ s2
σ

5 + 12s2
σ − s4

σ + 3ϕ(1 − s4
σ)

2(1 − ϕ)(1 + 3s2
σ)2 . (23)

This expression can be inserted into Eq. (17),

1 = C0(Z(m→∞)(ϕRCP, sσ) − 1). (24)

At small polydispersity, the packing fraction at RCP can be writ-
ten as ϕRCP = ϕmono

RCP + ΔϕRCP, with ΔϕRCP ≪ 1. Taylor-expanding
Eq. (24) to leading order in ΔϕRCP finally yields a closed-form
small-polydispersity approximation,

ΔϕRCP ≈
a1s2

σ + a2s4
σ + a3s6

σ

1 + b1s2
σ + b2s4

σ + b3s6
σ

, (25)

FIG. 9. Universal behavior at small polydispersity. With points, we plot the numeri-
cally obtained shift ΔϕRCP ≡ ϕRCP − ϕmono

RCP at small polydispersity for all four size
distributions considered in this paper. The dashed line is the closed-form expres-
sion for the shift in ϕRCP for small polydispersity, Eq. (25), for the PY EOS and the
bcc boundary condition.

with coefficients that only depend on the monodisperse value of
the RCP density, C0, and the derivative of Z at that density. The
coefficients of this rational function are given in Appendix C.

This approximation captures the universal parabolic depen-
dence of the RCP density observed at small polydispersities in
simulation data, as shown in Fig. 9. In practice, this simplified
expression could be useful in experimental contexts, in which the
standard deviation of diameters is more easily accessible than the
higher moments of the size distribution.

FIG. 10. Growth of the error with the skewness. With points, we plot (on a log-
linear scale) the numerically obtained ϕRCP for a bidisperse mixture (top) and
all three considered continuous distributions (bottom) considered in this paper,
against the dimensionless ratio of skewness to variance. Lines represent predic-
tions from our theory for various equations of state (solid lines: ePY, dotted lines:
eCS, and dashed lines: BMCSL, all with a bcc boundary condition). In the bottom
panel, white points are adapted from Ref. 57.
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Note that the closed-form expression, as well as the best agree-
ment with data, is found in the limit of small skewness compared
to the variance. In Fig. 10, we check the validity of this statement
for all tested distributions, showing that our predictions are best
when skew[σ]2/var[σ]3 is small. Interestingly, this corresponds to
intermediate number fractions of either species, or large variance,
in the bidisperse case but to small variance for the continuous dis-
tributions. These results highlight the importance of the choice of
equations of state, which for polydisperse systems are generally
designed for mixtures with small higher-order moments, as they are
written as moment expansions. 85 Thus, it is possible that more faith-
ful equations of state would lead to better results in the limit of large
polydispersities.

IV. CONCLUSIONS AND OUTLOOK
In this paper, we investigated the effect of polydispersity on the

random close packing (RCP) density ϕRCP of a hard-sphere fluid
in d = 3 dimensions. The main insight of our approach is that we
can arrive at a reasonable model of crowding for maximally ran-
dom jammed states on the basis of approximate liquid theories. This
analogy is reminiscent of analogies between quenched disorder in
type-II superconductors and thermal liquid structures,86,87 where a
thermal average of the liquid theory matched the quenched aver-
age over disorder sufficiently well to get quantitative estimates of
physical quantities.

This model of crowding allows us to estimate the effect of vol-
ume fraction on the contact value of the radial distribution function
and, therefore, the kissing number, z. By combining this model for
z(ϕ) with the isostaticity condition, z = 6, required for the onset of
shear rigidity at jamming,50 we derive a value for the RCP volume
fraction ϕRCP for monodisperse hard-spheres.

We show that a generalization of this approach to polydisperse
systems amounts to a straightforward substitution of the com-
pressibility for a monodisperse hard sphere system, Z(ϕ), with its
generalization to an m-component system, Z(m)(ϕ), obtained from
the generalization of an approximate equation of state to a mixture
with a given choice of particle size distribution (either discrete or
continuous).

First, we consider a bidisperse distribution of particle sizes
and compare our predictions to data from a large selection of past
works,34,53–56,82 as well as simulations of our own. For a wide range of
size ratios and molar fractions, we observe good agreement between
our theoretical predictions and the data. Then, we consider the par-
ticle diameter to follow one of three different types of continuous
distribution widely used to approximate polydispersity in colloidal
systems. In all cases, we find ϕRCP to increase monotonically with
the relative standard deviation of the distribution, sσ . We show that
these predicted values are in good agreement with numerical results
obtained from compression algorithms for polydispersities going up
to sσ = 0.5 (namely, 50% standard deviation over mean ratio). More-
over, we show that in the limit of small polydispersity, a closed-form
expression for the RCP density that only depends on the reduced
variance of the size distribution can be written and accounts for uni-
versal behavior observed for all tested size distributions. We finally
argue that the predictions become less reliable with increasing skew-
ness over variance ratio, which is typically assumed to be small by
the equations of states used in this paper. This raises the question of

whether better equations of state for polydisperse systems could lead
to better estimates.

More generally, this work raises an interesting numerical ques-
tion worth investigating in future work: the precise determination of
the location of the MRJ-line all the way to fcc and the nature of states
along it. While states are routinely sampled either exactly at fcc or on
the isostatic line z = 6 across densities,35,49 it is extremely unlikely for
usual compression schemes to end up anywhere between these two
regimes on the hyperstatic part of the MRJ-line. One would there-
fore need to devise an algorithm to impose either minimal kissing
numbers at a fixed density or maximal density at a fixed kissing num-
ber. Such work, while challenging, would shed light on the nature
of the densest isostatic jammed packing, in particular, on its funda-
mental ties with glassiness29,79 and critical points of absorbing-state
models.26,63

Finally, the introduced theoretical scheme could be used to
investigate the additional jamming line recently found for binary
mixtures of hard spheres in Refs. 88 and 89. Furthermore, using
known equations of states, it could be applied not only to arbitrary
polydispersity of hard spheres,104 but also to other particle shapes,
which could serve as a simple tool to understand the jamming
transition of general hard objects.
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APPENDIX A: EQUATIONS OF STATE

We here list the equations of state used in the main text within
our analogy between jammed states and equilibrium configurations
of hard spheres.

1. Monodisperse equations of state
For a monodisperse hard-sphere system in three dimensions,

from the analytical solution of the Percus–Yevick (PY) equation for
the direct correlation function, two analytical EOS can be obtained.9
By injecting the PY solution into the compressibility equation, the
compressibility EOS, Zc

PY(ϕ), is derived, while by injecting it into the
virial expansion, the virial EOS, Zv

PY(ϕ), is obtained. Thiele90 and
Wertheim91 independently found the compressibility and the virial
equations of state to be given by Zc

PY(ϕ) = (1 + ϕ + ϕ2)/(1 − ϕ)3

and Zv
PY(ϕ) = (1 + 2ϕ + 3ϕ2)/(1 − ϕ)2, respectively. Subsequently,

Carnahan and Starling92 showed that a more accurate EOS for hard
spheres is given by a linear combination of Zv

PY(ϕ) and Zc
PY(ϕ)

and introduced the so-called Carnahan–Starling (CS) EOS, ZCS(ϕ)
≡ 2

3 Zc
PY(ϕ) + 1

3 Zv
PY(ϕ) = (1 + ϕ + ϕ2 − ϕ3)/(1 − ϕ)3. Upon inser-

tion of the Zv
PY(ϕ) EOS into Eq. (5), one obtains93

gPY(σ;ϕ) = 1 + ϕ/2
(1 − ϕ)2 , (A1)

while insertion of the ZCS(ϕ) EOS into Eq. (5) leads to

gCS(σ;ϕ) = 1 − ϕ/2
(1 − ϕ)3 . (A2)

Likewise, phenomenological equations of state with numerical fit-
ting factors have been proposed to match numerical data on the
equilibrium fcc branch of hard spheres that diverges at fcc. For
instance, the Young and Alder (YA) equation of state reads8,94

ZYA(α) =
3
α
+ 2.81 + 0.47α − 1.36α2 + 6.41α3, (A3)

with α = (ϕfcc − ϕ)/ϕ.

2. Polydisperse equations of state
In this paper, we consider three different equations of state

for mixtures of hard spheres at equilibrium. The first one is

the Boublík–Mansoori–Carnahan–Starling–Leland (BMCSL) EOS,
which reads76,95

ZBMCSL(ϕ) =
1

1 − ϕ +
3ϕ

(1 − ϕ)2

⟨σ⟩⟨σ2⟩
⟨σ3⟩ +

ϕ2(3 − ϕ)
(1 − ϕ)3

⟨σ2⟩3

⟨σ3⟩2
, (A4)

and reduces to the CS EOS ZCS(ϕ) in the monodisperse limit
f (σ) = ∑m

i=1 xiδ(σi − σ) with m = 1. To get two other candidates for
the EOS, we follow the recipe introduced by Santos et al. in Ref. 77
to derive the EOS Z(m→∞)(ϕ) of a polydisperse mixture of additive
hard spheres in terms of the EOS Z(ϕ) of a one-component system,

Z(m→∞)(ϕ) = 1 + [Z(ϕ) − 1]
⟨σ2⟩

2⟨σ3⟩2
(⟨σ2⟩2 + ⟨σ⟩⟨σ3⟩)

+ ϕ
(1 − ϕ)[1 −

⟨σ2⟩
⟨σ3⟩2

(2⟨σ2⟩2 − ⟨σ⟩⟨σ3⟩)]. (A5)

In this paper, we consider the cases Z(ϕ) = ZCS(ϕ) and
Z(ϕ) = Zv

PY(ϕ), which, respectively, yield the so-called extended
Carnahan–Starling (eCS) EOS,

ZeCS(ϕ) = ZBMCSL(ϕ) +
ϕ3

(1 − ϕ)3

⟨σ2⟩
⟨σ3⟩2

(⟨σ⟩⟨σ3⟩ − ⟨σ2⟩2), (A6)

and extended Percus–Yevick (ePY) EOS, ZePY(ϕ). By construc-
tion, ZeCS(ϕ) and ZePY(ϕ) reduce to the ZCS(ϕ) and ZPY(ϕ) EOS,
respectively, in the monodisperse limit.

APPENDIX B: GAMMA AND TRUNCATED
POWER-LAW DISTRIBUTIONS

In the main text, we present a full set of results for continu-
ous polydispersity drawn from the log-normal distribution and then
briefly discuss results for two other common distributions. In this
appendix, we show the full set of results for these distributions.

The first one is the Gamma distribution, also called the Schulz
distribution in this context,61 which reads

f Schulz(σ) = (
α + 1
σ̄
)
α+1 σαe−(α+1)σ/σ̄

Γ(α + 1) , (B1)

where Γ(z) is the gamma function.96 The moments of fSchulz(σ) are
given by

⟨σj⟩ = Γ(j + α + 1)
Γ(α + 1) (

σ̄
α + 1

)
j
, (B2)

such that the average value is ⟨σ⟩ = σ̄ and the variance is var[σ]
≡ ⟨σ2⟩ − ⟨σ⟩2 = σ̄ 2/(1 + α). The relative standard deviation can be
written as

s S
σ =
(⟨σ2⟩ − ⟨σ⟩2)1/2

⟨σ⟩ = 1
(α + 1)1/2 . (B3)

The last distribution we consider is a truncated power-law
distribution, which scales as the inverse of the occupied volume,
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introduced by Berthier and co-workers in the context of supercooled
liquids,58,59

f B(σ) =
A
σ3 , (B4)

where A is a normalizing constant and σ ∈ [σmin, σmax], with
σmin and σmax being the minimum and maximum diameter
values, respectively. By imposing the normalization condition
∫ σmax
σmin

f B(σ) = 1, it follows that A = 2σ2
minσ2

max/(σ2
max − σ2

min). The

FIG. 11. RCP of gamma-distributed hard spheres. Random close packing density
ϕRCP against the reduced standard deviation s Schulz

σ for hard spheres with diameter
following the Gamma or Schulz distribution. Top: full range up to a final plateau.
Bottom: zoom on the small polydispersity region.

mean value and the variance of the distribution are ⟨σ⟩ = 2σmin
σmax/(σmin + σmax) and var[σ] = −4σ2

minσ2
max/(σmin + σmax)2 + 2σ2

min
σ2

max ln(σmin/σmax)/(σ2
min − σ2

max), respectively. By introducing
β ≡ σmax/σmin, the relative standard deviation can be written as

s B
σ =
(⟨σ2⟩ − ⟨σ⟩2)1/2

⟨σ⟩ = ( 1 + β
2(β − 1) ln β − 1)

1/2

. (B5)

Like in the case of the log-normal distribution, we take advan-
tage of the explicit knowledge of the moments of the fSchulz(σ) and
the fB(σ) distributions to compute the EOS of the system for each of

FIG. 12. RCP of power-law-distributed hard spheres. Random close packing den-
sity ϕRCP against the reduced standard deviation sB

σ for hard spheres with diameter
following a truncated power-law. Top: full range up to a final plateau. Bottom: zoom
on the small polydispersity region.
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the approximations considered in the previous section. We observe
that again Z(m→∞)(ϕ) only depends on a single parameter repre-
senting the spread of the distribution. This is the α parameter in the
Schulz distribution (B1) and β in the distribution of Berthier and co-
workers (B4). We then follow the same protocol of the log-normal
distribution to find ϕRCP as a function of the size polydispersity,
expressed in terms of the reduced standard deviation.

The results for the Gamma and the truncated power-law distri-
butions are shown in Figs. 11 and 12, respectively. The same color
and line-style codes as in Fig. 8 are used therein to show predic-
tions of RCP using different EOS and boundary conditions. We find
results qualitatively similar to those discussed in the case of the log-
normal distribution, with quantitative differences in both the rate
of increase of the RCP packing fraction and the precise value of the
large-polydispersity plateau. Furthermore, we show values of ϕRCP
measured from our own simulations as symbols.

APPENDIX C: ANALYTICAL EXPRESSION AT SMALL
POLYDISPERSITY

In the main text, we present an explicit analytical expression for
the shift of the RCP density at small polydispersity. We here give its
complete expression,

ΔϕRCP ≈
a1s2

σ + a2s4
σ + a3s6

σ

1 + b1s2
σ + b2s4

σ + b3s6
σ

, (C1)

with

a1 =
5 − ϕmono

RCP (5 + 8C0)
2C0(1 − ϕmono

RCP )Z′(ϕmono
RCP )

, (C2)

a2 = 6
1 − (C0 + 1)ϕmono

RCP

C0(1 − ϕmono
RCP )Z′(ϕmono

RCP )
, (C3)

a3 =
(4C0 + 1)ϕmono

RCP − 1
2C0(1 − ϕmono

RCP )Z′(ϕmono
RCP )

, (C4)

b1 =
7
2
+ 4
(1 − ϕmono

RCP )2Z′(ϕmono
RCP )

, (C5)

b2 = 3 + 6
(1 − ϕmono

RCP )2Z′(ϕmono
RCP )

, (C6)

b3 =
1
2
− 2
(1 − ϕmono

RCP )2Z′(ϕmono
RCP )

, (C7)

where the derivative of the EOS, for instance, takes the values

ZCS
′(ϕmono

RCP ) =
4 + 2ϕmono

RCP (2 − ϕmono
RCP )

(1 − ϕmono
RCP )4 , (C8)

Zc
PY
′(ϕmono

RCP ) =
4 + 8ϕmono

RCP

(1 − ϕmono
RCP )3 , (C9)

using the CS and compressibility PY EOS, respectively.

APPENDIX D: NUMERICAL METHODS

We here describe the numerical simulations used to validate
our predictions of ϕRCP. In the qualitative validation of the anal-
ogy with equilibrium liquid, the data used in Fig. 5 were generated
using a Torquato–Jiao (TJ) algorithm.48,49 This algorithm starts
from a low-density isotropic state, in our case, following Ref. 97, a
ϕ = 0.1 arrangement of monodisperse spheres generated by random
sequential adsorption (RSA). It then proposes isotropic compres-
sion, simple shear, and particle motion in such a way that density
gain is optimized at every step, with the constraint that each type of
move has an amplitude bounded by a user-defined value. The direc-
tion of motion is determined by a user-defined interaction radius
around particles, a so-called “sphere of influence.”48 At each step,
particles look up neighbors that lie within that sphere and then move
toward their center of mass (or, in the case of a single neighbor, the
move is performed away from the particle). In our case, we set max-
imal compression, shear, and displacement amplitudes to 0.01 times
the diameter of a particle, and we make the radius of the sphere of
influence 3.5 particle diameters. These values were set using Refs. 48
and 97 to favor higher densities. The program ends when the volume
change between two steps changes by less than 2 × 10−12 in units
of diameters cubed. As mentioned in the main text, this algorithm
favors maximally random configurations but also overwhelmingly
generates densities around a central one, at roughly 0.63–0.64; see
the histogram in Fig. 13. That is why we choose a relatively small
number of particles N = 108 so that we can get a large set of inde-
pendent compression events and manage to measure final states far
away from the mean of that histogram.

To generate the data in the polydisperse case, we use a varia-
tion of the Lubachevsky–Stillinger (LS) algorithm,80,81 introduced in
Ref. 79, in which dense random packings are obtained using increas-
ingly slow compression, alternated with free evolution to let the

FIG. 13. Histogram of output densities of the TJ algorithm. This histogram was
obtained by performing about 105 compressions of N = 108 hard spheres.
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pressure of the system relax to smaller values every time it crosses
the threshold value 1012. In practice, we used the same code and
followed the same recipe as in Ref. 79: starting from random posi-
tions obtained by Poisson point-picking in a cubic box, we pre-
compressed particles to a target packing fraction of 0.4–0.6 using a
force-biased algorithm. We then ran a first, fixed-rate LS algorithm
at compression rate γ. We finally ran the modified LS algorithm
(MLS), yielding a final packing fraction ϕMLS(γ) that depends on
the compression rate of the preliminary fixed-rate compression. The
RCP packing fractions presented in the text are values of the den-
sity estimated from an extrapolation of the observed trend ϕMLS(γ)
in the limit γ→ 0. In our simulations, we used N = 104 particles,
and using Fig. 2 of Ref. 79 as a guide, we used inverse compres-
sion rates in the range γ−1 ∈ [102; 105] in the LS algorithm, except
for sσ < 0.1, where we used a maximal inverse rate of 2 × 103 to avoid
crystallization.
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