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ABSTRACT
Data-driven interatomic potentials (IPs) trained on large collections of first principles calculations are rapidly becoming essential tools in
the fields of computational materials science and chemistry for performing atomic-scale simulations. Despite this, apart from a few notable
exceptions, there is a distinct lack of well-organized, public datasets in common formats available for use with IP development. This deficiency
precludes the research community from implementing widespread benchmarking, which is essential for gaining insight into model perfor-
mance and transferability, and also limits the development of more general, or even universal, IPs. To address this issue, we introduce the
ColabFit Exchange, the first database providing open access to a large collection of systematically organized datasets from multiple domains
that is especially designed for IP development. The ColabFit Exchange is publicly available at https://colabfit.org, providing a web-based
interface for exploring, downloading, and contributing datasets. Composed of data collected from the literature or provided by community
researchers, the ColabFit Exchange currently (September 2023) consists of 139 datasets spanning nearly 70 000 unique chemistries, and is
intended to continuously grow. In addition to outlining the software framework used for constructing and accessing the ColabFit Exchange,
we also provide analyses of the data, quantifying the diversity of the database and proposing metrics for assessing the relative diversity of
multiple datasets. Finally, we demonstrate an end-to-end IP development pipeline, utilizing datasets from the ColabFit Exchange, fitting tools
from the KLIFF software package, and validation tests provided by the OpenKIM framework.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0163882

I. INTRODUCTION

Leveraging modern computing infrastructures, high-
throughput pipelines for density functional theory (DFT)
calculations have been able to produce results for millions of
atomic configurations spanning a wide range of chemistries and
applications.1–6 These methods have led to the creation of a number
of massive datasets of first principles calculations, such as the Mate-
rials Project7 and the OpenCatalyst Project,8,9 among others,10–13

which have served as critical resources for materials discovery and
interatomic potential (IP) development. While these repositories

have proven extremely useful, there still exist opportunities for
continued development and dissemination of datasets specifically
tailored to fit the needs of developers of data-driven (DD) inter-
atomic potentials (IPs). In particular, datasets intended for use
with IP development typically include a variety of non-equilibrium
atomic configurations or hand-selected structures depending on
the target application. Furthermore, datasets intended for fitting
data-driven interatomic potentials (DDIPs) are often carefully
pruned and refined to enable the models to efficiently learn the
physical behaviors relevant for the accurate prediction of a given
material property, and to achieve stable simulations. Conversely,
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existing databases of quantum mechanical (QM) calculations focus
predominantly on stable equilibrium structures relevant to material
discovery. Even in the case of databases that do contain portions of
the data that may be suitable for use in DDIP fitting, they are rarely
organized in a way that facilitates model benchmarking or targeted
analysis of model behavior across chemical compound space.

In addition to the issues of content and structure of existing
QM calculation databases, common methods for organizing and dis-
tributing DDIP training datasets, such as the use of personal Github
repositories,9,14–17 Figshare18–22 or Zenodo23–26 uploads, or other
file sharing methods are inconsistent and not conducive to inter-
pretability and interoperability of the datasets. Datasets stored in
this manner often use custom formats (Extended XYZ, HDF5, VASP
OUTCARs, CSV, JSON) depending upon the specific research group
that generated them, and despite government insistence27,28 typically
lack metadata necessary for interpretability and reproducibility of
the data (missing units, unspecified DFT settings, undocumented
inconsistencies in data structure). Unfortunately, even this lim-
ited approach for sharing data is pursued by only a handful of
researchers, with the vast majority of DDIP datasets being entirely
inaccessible to the general public or made available through private
correspondence “upon reasonable request,” without always hon-
oring such requests. The end result is a significant decrease in
reproducibility of published results and the effective loss of non-
trivial amounts of effort and computational time spent on data
generation, inevitably hindering scientific progress.

The notion of a FAIR (findable, accessible, interoperable, and
reusable) data framework reflects a growing effort in the materials
and chemistry communities to address these issues and foster the
open exchange of materials and chemical data.29 A FAIR database
of datasets designed for DDIP training would help to facilitate col-
laboration and drive innovation, but must necessarily address a
few key issues in order to succeed. Specifically, it must: (1) define
a consistent, efficient, and standardized method for storing the
data; (2) enable the organization of the data into meaningful, well-
documented groupings; and (3) provide tools for easily accessing
and contributing to the database in order to promote community
engagement. In this work, we outline a standard for constructing
FAIR databases of first-principles calculations, and use it to con-
struct the ColabFit Exchange, the first database of open-access DDIP
training datasets. We will detail the data structure of the resulting
database, summarize its content, and demonstrate the use of tools
for identifying and characterizing regions of configurational and
compositional space sampled by existing datasets. By serving as a
centralized, standardized, and open-access hub for DDIP datasets,
the ColabFit Exchange provides the community with a unique
opportunity to begin performing large scale analyses of model per-
formances and dataset qualities that were previously infeasible for
most researchers.

II. STRUCTURE
In order to facilitate the construction of organized datasets, and

to ensure that the underlying data is stored in an efficient man-
ner, we develop a hierarchical data storage standard (outlined in
Fig. 1) comprising seven core components that we describe in detail
in this section. Each of these components is implemented in the
colabfit-tools software package30 following an object-oriented

FIG. 1. A diagram of the ColabFit Data Standard, which defines the structure of
the ColabFit Exchange. The standard comprises seven component types, which
can be roughly grouped into three categories (with acronyms defined in the
figure): primitive components (PI, CO) for storing input/output data, organizational
components (DS, CS, DO) for creating meaningful groupings of lower-level compo-
nents, and informational components for providing required (PD) or optional (MD)
documentation of arbitrary components. Arrows between components specify rela-
tionships, e.g., a CO references CS and DO components). Open arrowheads
denote many-to-one relationships, while filled arrowheads represent many-to-
many relationships. For example, multiple CSs may reference multiple DSs, but
each PI references only one PD.

design scheme. In this section we will give examples of how the
ColabFit Data Standard can be applied to construct a database of
atomistic ground-truth datasets, as this is the primary task which
the ColabFit project aims to address. It is important to note, how-
ever, that the data standard is designed to be sufficiently flexible
for adaptation to many other scientific domains where data-driven
approaches are of interest.

A. Low-level components (COs and PIs)
The two fundamental building blocks of the ColabFit Data

Standard are Configurations (COs) and Property Instances (PIs).
Each CO stores a representation of an elementary object of inter-
est and typically serves as input (x) to a DD pipeline. PIs, on
the other hand, store instances of property measurements associ-
ated with COs and typically serve as predictive targets (y). For the
examples outlined below, these will be atomistic configurations and
target property values measured through ground-truth calculations
or through experiments.

Broadly speaking, a CO subclass must define two critical func-
tionalities: (1) it must define a list of keys whose values are used to
generate a hash for comparing CO objects, and (2) it must define two
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functions, one for generating a dictionary of information summariz-
ing the contents of the CO, and another specifying how information
from a set of COs may be aggregated into a single dictionary. These
summary and aggregation functions will be called by higher-level
objects to gather information about groups of COs. For example,
in the case of an atomic configuration, the atom types, Cartesian
coordinates of the atoms, cell vectors, and periodic boundary condi-
tions would all be required to uniquely distinguish between two COs.
A summary dictionary for an atomic configuration could include
information such as the number of atoms in the cell, the chemi-
cal formula, the periodicity of the cell, or any other information
deemed useful by the curators of the dataset. These traits enable
the development of workflow pipelines for aggregating informa-
tion about groups of configurations up to a higher-level component
(see Sec. II C), which in turn aid in the construction of rich and
efficiently queryable metadata.

Notably, the ColabFit Exchange currently makes the assump-
tion that a given database is used to store only one type of CO at a
time (e.g., only atomic configurations) in order to simplify the data
aggregation process. This assumption may be relaxed in the future,
depending upon the needs of the community. Using the ColabFit
Data Standard to construct a database for data other than atom-
istic property predictions (e.g., property prediction for biomolecules
specified by sequences whose characters span 20 naturally occurring
amino acids) will typically involve writing a new CO subclass speci-
fication, with required keys matching the application of interest and
custom aggregation functions.

Whereas COs store the input, PIs store the “ground-truth” out-
put. Importantly, a PI contains a single computed property (and
its units), such as the potential energy of the system or the atomic
forces, rather than all of the properties associated with a given calcu-
lation. The decision to separate each property into its own PI allows
for more efficient data storage, as it means that duplicate documents
do not need to be stored in the database even in the case where two
calculations have only a subset of matching properties (e.g., DFT
calculations of two different single-atom primitive cells of ground-
state crystals, which would both have zero forces, but will likely have
different energies). Furthermore, this design choice allows PIs to be
added or modified independently of the corresponding COs, which
helps to simplify the process of cleaning and modifying datasets. In
practice, a PI is a dictionary of key–value pairs for storing computed
or measured properties and their associated units, plus some basic
functionality for unit conversion and hashing. All PIs are required
to point to exactly one Property Definition object in order to prop-
erly document the structure and contents of the PI (see Sec. II B for
more details).

B. Informational components (PDs and MDs)
With the goal of encouraging reproducibility and ensuring

that all of the data stored within a ColabFit database is well-
documented,27,28 Property Definition (PDs) and Metadata (MD)
objects can be used to enforce structure in the data and provide
additional information about each object.

All PIs are required to point to exactly one PD, which serves as
an explicit, computer-readable definition (schema) of the contents of
the PI following the Knowledgebase of Interatomic Models (KIM)
Property Definition specification.31 The most important benefit of

PDs is that they improve the homogeneity of the database by ensur-
ing that all properties of the same type are stored in the same format.
PDs specify all of the keys available in the PI; for each of these keys,
the PD will also specify if the key is required/optional, the data type
of the corresponding value, the shape of the data (i.e., scalar, vector,
tensor, . . .), if the value has units, and a brief description of the data.
The KIM PD specification also supports uncertainty information for
stored values, which may be included in ColabFit in the future.

A simple atomistic property example is the potential-energy
PD, which has the keys “energy” (the potential energy of the sys-
tem; required, float, scalar, has units), “per-atom” (if the energy has
been divided by the number of atoms in the CO; required, boolean,
scalar, unitless), and “reference-energy” (the value, if any, which
has been subtracted from the “energy” value; optional, float, scalar,
has units). As is the case with COs and PIs, by storing the PD as its
own object rather than attaching the data directly to each PI, we are
able to avoid duplicating data unnecessarily while still maintaining
proper documentation of the PI contents.

While PDs serve as mandatory documentation of the contents
of a PI, MD objects can be used to store optional additional infor-
mation about objects of any type. MD objects can be any valid JSON
dictionary, and are intended to be sufficiently flexible for storing
data that does not fit naturally into any of the other object types.
One of the most common applications of MD objects for construct-
ing a DFT database would be to store pointers to raw input/output
files (e.g., INCAR/OUTCAR files from VASP32) or additional infor-
mation regarding simulation settings. Best practice would be to use
MD objects to ensure that sufficient information is provided to
reproduce any calculation in the database. In addition to improving
reproducibility, proper use of MDs can also be valuable for identi-
fying when datasets were computed using different settings or levels
of theory, which can be important for transfer learning tasks12,33 and
can inform on when datasets may, or may not, be used in conjuction
with each other for model training. Generally, the contents of MDs
are not expected to be queryable, as available keys may vary drasti-
cally between datasets, though in some cases we found it useful to
manually parse the MDs to improve the quality of common queries
over COs or PIs (e.g., descriptive labels on COs, or levels of theory
used for computing PIs).

C. Organizational components (DOs, CSs, and DSs)
Given that the ColabFit Data Standard is meant for con-

structing databases for data-driven model development, it obviously
must allow for the data to be organized in meaningful and useful
ways. Data Objects (DOs), Configuration Sets (CSs), and Datasets
(DSs) facilitate this by defining higher-level groupings of lower-level
objects.

A DO is perhaps the simplest of these groupings—it defines
relationships between one or more COs with one or more PIs.
Conceptually, DOs should be used to link inputs and outputs of a
given calculation or measurement. For example, a DFT calculation
would typically produce both an energy PI and an atomic forces
PI, which could be grouped under a single DO that also points to
the corresponding CO and details of the calculation in an MD. A
more complex example would be a nudged elastic band calcula-
tion,34 where it would be necessary to define a relationship between
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a computed energy barrier (a PI) and multiple images interpolat-
ing between the start/end transition states (each stored as their own
CO).

Another object, which we observe is particularly useful in prac-
tice for improving data interpretability, is the CS. A CS defines a
grouping (and optionally, an ordering) over one or many COs, and
allows a user to give a name and a description to that grouping.
Generally, CSs should be used for organizing configurations into
groups that will help end-users better understand the contents of
the dataset. In the materials and chemical sciences, it is common
for dataset developers to organize their data based on attributes such
as molecule type, physical structure, or method of generation.35–37

For example, molecular dynamics or relaxation trajectories are often
grouped together by DDIP developers. Similar methods can be use-
ful in other deep learning fields, such as with the Modified National
Institute of Standards and Technology (MNIST)38 or CIFAR-1039

datasets where the data are naturally grouped by class. Such group-
ings make it easier for users of the datasets to understand the con-
tents of the dataset, facilitate filtering, and improve interpretability
of the behaviors of models trained to the data.

The highest level object (aside from a database itself) is a
DS, which matches the canonical meaning of the word: a collec-
tion of data points and any associated metadata. Similar to how a
CS defines a collection of COs, a DS defines a collection of DOs
and CSs, and includes additional metadata such as a name, list of
authors, relevant links, and a description. Notably, a DS references
CSs rather than COs directly in order to ensure that any orga-
nizational structure imposed by the CSs is reflected in the DS as
well. The DS serves as a complete, well-documented, and queryable
representation of a collection of computed values and their corre-
sponding inputs, and is intended to be packaged and distributed
as a self-contained object to facilitate reproducibility, standardized
benchmarking, and collaboration. All DSs currently in the Colab-
Fit Exchange are assigned unique DOIs for tracking citations and
can be downloaded at https://colabfit.org as extended XYZ files in a
standardized format.

D. Additional technical details
Two important features of the ColabFit Data Standard are the

abilities to store the data in an efficient and queryable manner, and
to aggregate low-level information in order to generate information-
rich, high-level metadata. While part of this functionality is achieved
through careful separation of data objects into their constituent parts
(PIs, COs, PDs, and MDs), it also depends upon a few other technical
details discussed in this section.

First, hashing functions are used to generate unique IDs for
every component in the database; these digest specified contents of
each component and return a hexadecimal string. The contents of
a component that are digested in order to generate the hash vary
depending on the component’s type: MDs directly hash their entire
contents; PIs hash their computed values and units; COs hash the
contents of their required keys. The hashes for higher level compo-
nents (DOs, CSs, and DSs) are generated by hashing the IDs of all
of their sub-components. For example, a CS’s ID is a hash of the
list of the IDs of all COs grouped by the CS. PDs are the only com-
ponents which do not use hashes for their unique ID, but instead
are given user-specified names, as there are relatively few PDs and

it is important for their IDs to be human-readable. This hashing
avoids the issue of duplicate entries (those whose content is iden-
tical within machine precision) when users re-upload portions of
existing datasets or coincidentally generate the exact same data as
another author (a relatively common occurrence in the materials
and chemical sciences).

Second, aggregation pipelines were developed for building
metadata for high-level objects (CSs and DSs). Although some meta-
data is stored on CS/DS objects directly, other information must
necessarily be propagated up from the CO/PI level; for example,
information such as the total number of atoms contained within
a CS, the chemical formulas present, or the relative concentra-
tions of elements. In order to enable this type of data aggregation,
low-level components (COs and PIs) provide functions for return-
ing “summaries” of their contents, which are key–value dictionar-
ies summarizing any additional information of interest that the
database authors think might be useful. The low-level components
also provide functions for merging lists of metadata dictionaries into
a single dictionary. Database developers may adjust the behaviors of
these summary and aggregation functions depending on their needs
and target applications. This aggregated metadata greatly improves
the queryability and interpretability of the data, and helps to build
a database that can be more easily used by model developers for
drawing insights about their data.

E. Comparison to OPTIMADE
In order to simplify the process of understanding the design

choices made in this work, we compare the ColabFit Data Stan-
dard outlined above to the OPTIMADE API,40 which is a broad
effort from researchers across many domains of materials science
to develop interoperable databases of materials data. Although the
ColabFit Exchange is not yet OPTIMADE-compliant (which is a
future goal of the work), many parallels can be drawn between the
components described in Fig. 1 and objects from the OPTIMADE
API. Given the ubiquity within the community of the need for repre-
senting atomic configurations, it is unsurprising that the CO object
described in Sec. II A contains all of the information necessary to
define a Structures object in the OPTIMADE API, and could be
easily made to match with some additional processing (i.e., storing
various chemical formulas, or re-formatting certain fields to fit the
OPTIMADE specifications). The ColabFit Standard PD and PI com-
ponents roughly correspond to OPTIMADE Property Definition
and Calculation objects, though the two standards begin to diverge
in the specific details of these components. For example, PDs allow
for specifying units, whereas the OPTIMADE Property Definition
does not, and PIs are required to be associated with a PD while
OPTIMADE Calculation objects are not. The largest discrepancies
between the two standards arise from the higher level components
described in Sec. II C, where ColabFit’s need for defining group-
ings over objects (e.g., CSs as groups of COs, and DSs as groups of
CSs and DOs) are not well-supported by the current OPTIMADE
API. Although possible workarounds exist in order to represent a
DO/CS/DS using existing OPTIMADE objects (e.g., with relation-
ships), such constructions would have been inefficient and lacking in
many of the desired functionalities of DOs/CS/DSs. There is, how-
ever, a current effort within the OPTIMADE community to support
trajectory-like objects (groups of Structures, intended for storing
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TABLE I. Counts of objects of interest in the ColabFit Exchange, excluding the data
from the OpenCatalyst datasets. These values do not double count in the case where
there exist duplicates of a given object (e.g., when an identical configuration was
uploaded in multiple datasets, or an author is credited on multiple publications). Here,
a “chemical system” refers to a set of unique constituent atom types.

Objects Count

Datasets 139
Configuration sets 459
Data objects 11 185 734
Configurations 10 752 923
Atoms 512 108 838
Chemical systems 68 474
Publications 79
Authors 323

simulation trajectories) which, once fully implemented, will more
easily support the needs of the ColabFit Exchange.

III. OVERVIEW
Table I provides a summary of the contents of the ColabFit

Exchange, which is currently (September 2023) composed of 139
unique datasets contributed by their authors or gathered from the
literature. These datasets are further broken down into 459 con-
figuration sets, which can be readily combined, split, or grouped
in order to define new datasets based on the needs of the com-
munity. In total, the ColabFit Exchange contains over 11 × 106

DOs, corresponding to ∼28 × 106 computed properties. Note that
the OpenCatalyst datasets (which are included in the ColabFit
Exchange) are not included in these summary statistics, as they
are already well-documented elsewhere in the literature8,9 and their

FIG. 2. Chemical composition of the ColabFit Exchange, spanning 89 of the 118 elements on the periodic table, for a total of 68 474 unique chemical systems. After excluding
the OpenCatalyst data (which is not represented in this figure), the majority of the database is composed of organic molecules (C, H, and O alone make up ∼60% of the
data shown in this figure) due to the relative popularity and availability of molecular datasets. There is currently no data for elements with atomic numbers between 84 and
88, or greater than 94. The bottom panel shows histograms of the number of unique chemical systems (left) or configurations (right) present in the ColabFit Exchange for
different numbers of atomic types (i.e., the number of unary/binary/ternary/. . . systems or configurations). The HME21 dataset20 accounts for the majority of the data with
large numbers of atom types; without HME21, all systems have fewer than ten atom types.
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large sizes (∼134 × 106 DOs for OC20) would obscure the results
from the other datasets. As the ColabFit Exchange continues to
grow, updated statistics summarizing its contents can be found at
https://colabfit.org.

The ∼11 × 106 atomic configurations (for a total of 512 × 106

atoms) spanning nearly 70 000 chemical systems can be further ana-
lyzed based on their chemical composition, as shown in Fig. 2. Here,
a “chemical system” is defined as a set of unique constituent atom
types, e.g., C, C–H, C–H–N, . . . , and is indicative of the types of
chemistries explored within the ColabFit Exchange. Though sin-
gle element datasets are the most common (see Fig. 3), 95% of the
configurations in the ColabFit Exchange include at least two ele-
ments, meaning the ColabFit Exchange may be used as a starting
point for the development of many multi-element models. Much of
the multi-element data comes from larger datasets designed for the
construction of “universal” IPs intended to model all relevant types
of atomic interactions,41–43 such as the Materials Project trajectory
dataset,43 and others from the literature.20,42,44 By providing access
to all of these datasets within a unified framework, the ColabFit
Exchange will simplify the process of constructing training datasets
for new chemical systems that have not yet been explicitly sampled
by the datasets currently in the ColabFit Exchange.

The values in Table II provide a further breakdown of the most
prevalent computed properties stored within the ColabFit Exchange
that are available for supervised training. Energies are the most
commonly computed property, followed by forces. Note that the
energy counts in Table II are a sum over the four types of energy
PIs specified by the publications associated with the datasets in
the ColabFit Exchange (potential, free, atomization, and formation
energy), where each energy type is given its own PD. Note, the raw
number of force PIs shown in Table II does not reflect the total num-
ber of individual atomic force vectors in the ColabFit Exchange—the
number of individual force vectors is much higher, approximately
equaling the number of atoms in the database multiplied by the
fraction of DOs that contain an atomic force PI (90%). Stresses
are available for only about half of the DOs in the ColabFit Exchange,
with the majority coming from the Materials Project (MP) trajectory
dataset.43 The ColabFit Exchange also includes, for subsets of the

FIG. 3. Histogram showing the sizes of the datasets currently in the ColabFit
Exchange. The distribution of the total number of atoms summed over all COs
in a given dataset is Gaussian-like, centered about a mean of 106.

TABLE II. Counts of property instances in the ColabFit Exchange, excluding the data
from the OpenCatalyst datasets. These values do double count in the case where
two identical copies of a property exist (e.g., two distinct configurations were uploaded
with identical potential energies) in order to accurately reflect the number of target val-
ues in the ColabFit Exchange. Though many of the datasets currently in the ColabFit
Exchange contain more computed properties than the three shown here, energies,
forces, and stresses are the three that are predominantly used for training DDIPs.

Property instance (PI) Count

Energy 11 293 268
Atomic forces 10 102 772
Cauchy stress 6 729 342
Total 28 125 382

data, additional properties that are supported within the framework
as their own PDs but are less relevant to DDIP development. These
additional properties include indirect and direct band gaps, magne-
tization, atomic charges, polarizability, dipole moments, and a large
collection of common molecular properties from datasets like those
derived from GDB-17.45

At the dataset level, Fig. 3 shows that the ColabFit Exchange
has a wide range of dataset sizes, both in terms of the total number
of atoms and the number of unique atom types contained within a
given dataset. Though single element datasets are the most common,
these datasets are typically smaller than multi-element datasets.
The three datasets with greater than 20 atom types are HME-21,20

the Materials Project trajectory dataset,43 and the elpasolite crys-
tal dataset.46 The number of molecular datasets vs the number of
condensed matter datasets is roughly evenly split (51 molecular,
50 condensed matter, and five mixed), though the molecular datasets
usually include significantly more atomic configurations due to their
smaller number of atoms per configuration.

IV. APPLICATIONS
A critical step towards improving DDIP design and efficiently

constructing models for specific applications is to gain a better
understanding of what regions of composition and configuration
space have, or have not, been sampled by existing datasets. As the
ColabFit Exchange is the first attempt at curating an exhaustive list
of DDIP-fitting datasets, it provides a unique opportunity for per-
forming this type of analysis. Towards this end, in this section we
explore the use of tools for identifying and characterizing regions
of overlap between two datasets. Furthermore, we demonstrate how
the ColabFit Exchange can integrate with other model fitting and
validation tools to create an end-to-end fitting framework.

A. Comparing atomic environments
In order to compare configurations between datasets, it is

convenient to first define a method for obtaining a vector represen-
tation of the atomic environments in the configurations (which is
invariant to permutations, rotations and translations). This can be
done using several well-documented local “descriptors,” such as the
Atom-Centered Symmetry Functions (ACSF)47 or Smooth Over-
lap of Atomic Positions (SOAP)48 descriptors, among others.49–51
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However, given the quadratic scaling of the sizes of local envi-
ronment descriptors with the number of atom types, this rapidly
becomes intractable when performing database-wide analyses, as is
the goal here. We instead choose the descriptor to be a learned-
representation, i.e., intermediate vectors generated by a pre-trained
graph-based model. For this task, we chose to use the M3GNet uni-
versal potential,42 which has been previously trained to a subset of
the Materials Project relaxation trajectory dataset. The learned rep-
resentation is taken from the final layer of the M3GNet model prior
to the regression head, which has a size of Natom × 64, regardless of
the number of chemical species in the atomic configuration. These
Natom × 64 matrices are then averaged over Natoms in order to pro-
duce a single length-64 vector for each atomic configuration. Unified
Manifold Approximation and Projection (UMAP) visualizations of

these configuration-averaged M3GNet representations are shown in
Fig. 4.

B. Delaunay Component Analysis (DCA)
While visualizations like those shown in Fig. 4 are commonly

used for obtaining a qualitative understanding of the contents of
a dataset, and often provide advantages over methods like prin-
cipal component analysis (PCA), the use of UMAP (or tSNE52)
makes it challenging to obtain quantitative metrics since distances
are not preserved between the original and embedded spaces. In
order to obtain a more quantitative understanding of the relation-
ships between datasets, we explore the recently developed Delaunay

FIG. 4. Visualizations of the configurations in the C_Gardner_2022, C_npj2020, Carbon_GAP_JCP2020, and CA-9 datasets in relation to each other. Plots are generated by
applying UMAP to configuration-averaged descriptors extracted from the M3GNet model, as described in Sec. IV A. Row labels denote the “reference” dataset used for DCA
in Sec. IV B, which are colored blue in each panel. Column labels denote the “evaluation” dataset, and are colored orange. To help highlight regions of overlap, points from
the reference dataset have been colored green if there is at least one point from the evaluation dataset within a chosen threshold value. Panels along the diagonal correspond
to only the reference set, in order to help guide visual comparisons to the other panels in the same row. Note that UMAP embeddings were performed individually for each
panel, including only the two datasets within that panel. This means that the embeddings may not be identical even for the same dataset across rows or down columns.
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Component Analysis (DCA) technique53 to quantify the overlap
between two datasets. Originally intended for comparing between
the manifolds of two learned representations of the same data, we
instead apply DCA here to the separate, yet related, task of com-
paring two datasets under the same representation (i.e., the learned
M3GNet latent vectors). Though we provide a brief summary of the
DCA method here, for a more thorough explanation we refer the
reader to Ref. 53. Some additional analysis of DCA as it relates to
this work can be found in the supplementary material. The DCA
analysis shown in this section uses the code provided by Ref. 53,
which is included in the colabfit-tools package alongside a growing
set of tools for dataset analysis organized under the colabfit-analyze
sub-package.

The goal of DCA is to derive metrics quantifying the degree of
overlap between two manifolds, where one manifold is defined by
points in a “reference” dataset, and the other manifold is defined by
points in an “evaluation” dataset. In this case, the manifolds exist in
the 64-dimensional latent space of the M3GNet model from which
we extracted the descriptors, and represent the phase spaces sampled
by each dataset. DCA constructs an approximate Delaunay graph
(known as the “dual graph” of a Voronoi diagram, where the cir-
cumcenters of triangles in the Delaunay graph are the vertices of the
corresponding Voronoi diagram) of the manifolds, then distills the
graph into connected components, i.e., robust sub-graphs, using a
minimum spanning tree. Vertices in the Delaunay graph correspond
to data points from the reference or evaluation datasets; edges link
points which are “natural neighbors” of each other (i.e., they have
adjoining Voronoi cells). Connected components are sub-graphs
representing clusters in the representation space, and may be com-
posed of a mix of vertices from both the reference and evaluation
datasets. Note that DCA does not modify the representations of the
configurations (descriptors) in any way, so it inherits all attributes
of the M3GNet descriptor (e.g., invariance to rotations of configura-
tions, learned embeddings of atomic types, etc.). Using the distilled
components, DCA then evaluates a “consistency” (c) and “quality”
(q) score for each component, defined as:

c(Gi) = 1 −
∣ ∣GR

i ∣ V − ∣GE
i ∣ V ∣

∣Gi∣ V

q(Gi) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1 −
(∣GR

i ∣ E + ∣GE
i ∣ E)

∣Gi∣ E
if ∣Gi∣ E ≥ 1,

0 otherwise,

(1)

where Gi is the Delaunay graph of component i, and ∣GR
i ∣ V and ∣GR

i ∣ E
denote the cardinalities of the vertex and edge sets of Gi restricted
to dataset R, respectively. Conceptually, consistency measures how
evenly represented each dataset is within a component, while quality
measures how well mixed the datasets are in a component. The local
metrics of consistency and quality, which are computed individu-
ally for each component, can then be used to identify “fundamental”
components (those with both high consistency and high quality)
in order to calculate global metrics of “precision” p and “recall”
r between the two datasets, defined as:

p =
∣F E
∣ V

∣GE
∣ V

and r =
∣F R
∣ V

∣GR
∣ V

, (2)

where F E and F R refers to the sub-graphs of the evaluation and
reference datasets, respectively, which are contained within a funda-
mental component. Intuitively, the precision measures the fraction
of points from the evaluation dataset which overlap with the ref-
erence dataset. Recall measures how well the reference dataset is
represented by the evaluation dataset. A high precision score means
that the evaluation dataset is well contained by the reference dataset;
a low recall means that the reference dataset includes data which
is not well-represented by the evaluation set. These definitions of
precision and recall are similar to those commonly used in other
deep learning tasks for quantifying the degree of overlap between
two distributions, though the use of “fundamental components” is a
valuable modification unique to DCA which helps apply the metrics
to manifold analysis.

As a demonstration of the utility of the global metrics of
precision and recall, we perform DCA using four datasets from
the ColabFit Exchange which include only pure carbon data:
C_Gardner_2020,17 C_npj2020,54 Carbon_GAP_JCP2020,55 and
CA-9.56

The C_Gardner_2020 dataset contains DDIP-computed
molecular dynamics trajectories of a melt/quench/anneal process;
C_npj2020 has a relatively narrow focus, with an emphasis on
monolayer and bilayer graphene, diamond, and graphite structures;
Carbon_GAP_JCP2020 contains a wide variety of carbon systems,
e.g., bulk, liquid, nanotubes, fullerene, graphene, etc.; and, finally,
CA-956 has DFT-computed molecular dynamics trajectories of
nine carbon allotropes (diamond, lonsdaleite, graphene, haeckelite,
SWCNT, fullerene, cumulene, carbyne, and amorphous C). We
extract the configuration-averaged M3GNet representations for
each dataset, as described in Sec. IV A, and use these as the
representations for DCA.

The precision scores reported in Fig. 5 immediately pro-
vide quantitative insights which match our intuitions based on
the UMAP visualizations in Fig. 4 and our knowledge of the
physical environments sampled by each dataset. For example, the
DCA-computed precision scores validate our expectations that Car-
bon_GAP_JCP2020 is the most diverse (highest row-average in
Fig. 5) of the four datasets, and that C_npj2020 is well captured
by most of the other datasets (highest column-average). The preci-
sion scores also allow us to make additional useful observations, e.g.,
C_Gardner_2020 is largely distinct (low precision and low recall)
from both C_npj2020 and CA-9, which is supported by the minimal
overlap seen Fig. 4.

These types of insights can be extremely valuable to DDIP
dataset developers when designing test sets or seeking to merge exist-
ing training sets to fit a more general model. For example, when
merging a new training set into an existing one, a low precision
score indicates that the new data is introducing new information
into the training set. Similarly, a high recall score indicates that the
new data may be over-sampling regions of configurational space that
are already well-represented by the existing data, therefore leading
to an effective increased weighting of those regions of space on the
loss function which can affect model performance and training met-
rics. Furthermore, precision and recall scores could help to identify
more suitable test sets, where it may be desirable that the test set have
low precision and high recall (e.g., to detect possible overfitting), low
precision and low recall (e.g., to test model generalizability/zero-shot
capacity), or any range of values in between these limits depending
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FIG. 5. Precision scores obtained by DCA comparing the four datasets from Fig. 4
to each other. A high precision score means that the evaluation dataset (column
labels) is well-contained within the reference dataset (row labels). A high recall
score (which corresponds to the transpose of this matrix) means that the evaluation
dataset provides good sampling of all components of the reference dataset.

upon the goal of the test. Use of DCA, or related metrics, can pro-
vide a more systematic approach to dataset construction, which can
help to address the known issues of high redundancy and correla-
tion in DDIP training sets and materials data,57–59 and will likely be
essential moving forward in the field to ensure that datasets are not
inhibiting the ability of researchers to properly assess model gener-
alizability. We would like to emphasize that DCA is just one example
of a method which could lead to better dataset design – other
techniques (e.g., dataset roughness,60 information imbalance,61 or
entropy-based metrics62) may be equally valuable, and should be
further developed alongside the ColabFit Exchange. Importantly,
because the ColabFit Exchange houses an ever-growing number of
diverse datasets, it can help facilitate large-scale benchmarking and

analysis of new methods (such as DCA), and provide insights across
many unique datasets.

C. Example fitting workflow
In order for the ColabFit Exchange to be usable in practice, it

is important that the datasets be easily accessed and interacted with
by a variety of DDIP fitting frameworks.15,63–65 While this is achiev-
able by writing simple I/O operations for exporting datasets from the
ColabFit Exchange as extended XYZ files, then re-formatting to inte-
grate with external software, a more streamlined approach would
be one which operates directly on the native ColabFit Exchange
data structures and ties in with necessary simulation and validation
packages. ColabFit Exchange datasets can be utilized for end-to-
end DDIP development entirely within the KIM ecosystem, taking
advantage of existing tools such as KLIFF66 for model training,
and OpenKIM67–70 for model testing, archiving, and deployment.
As an example of such an end-to-end workflow, we use KLIFF
to train a spline-based MEAM potential71,72 for lithium (Li) using
the mlearn-Li training dataset, which has been used along with its
other elemental counterparts for model benchmarking.73,74 KLIFF
supports seamless loading of ColabFit Exchange datasets, training
of physics-based IPs and arbitrary machine learning DDIPs based
on the PyTorch library,75 and exporting of KIM-compliant models
that can then be seamlessly deployed to a variety of molecular sim-
ulation packages that support the KIM standard including ASE,76

DL_POLY,77 GULP78 and LAMMPS79 (see Ref. 80 for a full list).
We fit the spline-based MEAM potential to energy and forces

utilizing seven knots per spline and an inner and outer cutoff radius
of 2.4 and 5.1 Å, respectively. The model achieved training (test-
ing) set energy and force RMSEs of 1.55 (1.65) meV/atom and 0.049
(0.046) eV/Å, respectively. Additional material property predictions
of the trained potential can be seen in Table III. The potential
performs well across all computed properties, with the largest rel-
ative errors being those of surface energy predictions [0.196 for

TABLE III. Computed lattice constant (a), elastic constants (cij), bulk modulus (K), vacancy formation, migration and
diffusion activation energies (Ev, Em, Ea), and surface energies (Es) of bcc Li using the spline-based MEAM potential
and DFT. Relative errors between MEAM and DFT values are also shown. All values for the fitted MEAM potential were
computed using the OpenKIM framework. DFT reference values are taken from Materials Project7,81,82 (mp-135) except for
vacancy energies which are taken from Ref. 83.

Property MEAM DFT Rel. Error Es (Jm−2) MEAM DFT Rel. error

a (Å) 3.44 3.44 0.000 (100) 0.466 0.462 0.009
c11 (GPa) 17 15 0.133 (110) 0.448 0.501 0.106
c12 (GPa) 13 13 0.000 (111) 0.516 0.544 0.051
c44 (GPa) 10 11 0.091 (210) 0.473 0.506 0.065
K (GPa) 14 14 0.000 (211) 0.505 0.538 0.061
Ev (eV) 0.455 0.481 0.054 (310) 0.473 0.497 0.048
Em (eV) 0.055 0.042 0.309 (311) 0.494 0.527 0.063
Ea (eV) 0.510 0.523 0.025 (320) 0.603 0.504 0.196

(321) 0.499 0.534 0.065
(322) 0.510 0.535 0.047
(331) 0.489 0.521 0.061
(332) 0.592 0.524 0.130
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the (320) surface]. This decreased performance of the model on
surface energy predictions is not surprising, given the relatively
small number of surface COs present in the training set (one CO
per surface). The one exception is the vacancy migration energy,
Em, which has a higher relative error than the surface energies
due its small magnitude. These results, along with results from
automated verification checks on model integrity can be viewed
on https://openkim.org/cite/MO_386038428339_000,84 where the
model has been archived along with >600 other curated and con-
tributed models for a wide variety of chemical and material systems.
This potential can be invoked in a portable fashion85 within a variety
of simulation platforms as explained above. We note that this exam-
ple is only meant as a demonstration of how the interoperability
ColabFit/KLIFF/OpenKIM leads to a streamlined fitting workflow.
A potential major benefit of the ColabFit Exchange is the ability to
leverage multiple datasets for DDIP development utilizing strate-
gies such as transfer learning86 and meta-learning.87 However, these
approaches are still very much an open scientific question, which we
will seek to address in future work pertaining to the ColabFit project.

V. CONTRIBUTING
As with many open-source projects, the utility of the ColabFit

Exchange will grow in proportion to the amount of engagement it
receives from the research community. Contributions from the com-
munity may come in many forms. To name just a few possibilities,
this could include: developing and uploading new DDIP training
sets; training models to existing datasets and documenting perfor-
mance metrics; improving the metadata in the database by adding
labels to COs or defining new, meaningful CSs; or developing new
tools (like those discussed in Sec. IV B) for characterizing dataset
distributions.

Given that we foresee uploading training sets as being the
most likely manner in which users will contribute to the Colab-
Fit Exchange, we provide here some guidance on how users may
best approach this task. The simplest way to contribute is through
the Github repository at https://github.com/colabfit/data-lake,
where instructions are provided for uploading data or request-
ing that the ColabFit team obtain existing data from the litera-
ture. Datasets contributed in this manner will be reviewed and
parsed by the ColabFit team before submission to the database. In
order to streamline the process of constructing useful and inter-
pretable datasets, the following best practices should be followed
by researchers interested in uploading their data to the ColabFit
Exchange:

● DSs should be given meaningful, human-readable names.
These need not be unique, since DSs are identified by their
hashes, but it is useful if they are, in order to avoid confusion.

● Training/testing splits should be provided as separate DSs.
● DSs and CSs should be given concise descriptions outlin-

ing their contents. Discussions of the type of data con-
tained within them (molecular, condensed matter, etc.) and
their target applications (catalysis, radiation damage, drug
discovery, benchmarking, etc.) are particularly useful.

● As much as possible, COs should be organized into concep-
tually meaningful CSs.

● As much as possible, COs should be given human-readable
labels.

● All metadata required for reproducing a calculation
(e.g., INCAR files) should be provided if possible.

● Computed properties should be adjusted to conform to
existing PDs (a list of which can be found at colabfit.org).
New PDs should be defined sparingly. Units must always be
specified, when applicable.

Two of the most common, and challenging, issues that we
struggled to overcome during the process of gathering datasets for
the ColabFit Exchange were when dataset developers (1) used cus-
tom, poorly-documented storage formats for their data; or (2) did
not define any conceptual groupings over their label which could
be translated into CSs or CO labels. In general, we recommend the
use of the Extended XYZ format as commonly used by ASE,76 and
the application of at least rudimentary labels on COs (e.g., “ground
state,” “liquid,” “strained,” etc.). For examples of well-constructed
datasets, we point the reader to Refs. 88–90, whose authors we
commend for publishing datasets with many desirable traits: (1)
open-access, (2) well-documented storage formats, (3) good labeling
of COs, and (4) clearly-defined groupings of COs.

While the Github repository is the simplest approach to con-
tributing data, it relies upon a significant amount of effort from the
ColabFit team in order to review and process the uploaded data, or
to read through journal articles and contact authors to obtain access
to their datasets. As an alternative, for those users who are able and
willing, the colabfit-tools package provides all of the necessary code
to manually parse your dataset into the data objects described in
Sec. II (see https://github.com/colabfit/colabfit-tools for examples).
This takes a large burden off of the ColabFit team, and can greatly
accelerate the upload process.

VI. CONCLUSION
In this work we have developed a flexible and robust data stan-

dard that we applied to atomistic property data to construct the
ColabFit Exchange, the first database of its kind specializing in data
for data-driven interatomic potential generation typically employ-
ing machine learning techniques. At the time of writing (September
2023), the ColabFit Exchange contains 139 curated datasets and is
actively being expanded, with particular emphasis on benchmarking
datasets—those, which have been well tested, clearly documented,
and shown to be suitable for analyzing aspects of model quality and
guiding future development of reliable IPs. Along with the devel-
opment of the ColabFit Exchange, we demonstrated the usefulness
of DCA for identifying and characterizing overlapping regions of
datasets, which can help to further guide dataset generation towards
populating under-sampled regions of configurational and compo-
sitional space, thus improving the generalizability of the resultant
DDIPs. Finally, we have shown how the data within the Colab-
Fit Exchange can be utilized for end-to-end development of IPs
within the KIM ecosystem, providing the benefits of seamless data
retrieval, model exporting for use with major simulation software
packages, and automated model verification, testing, and archiv-
ing on https://openkim.org. While our current focus is on atomistic
data, specifically properties commonly applied to IP development,
our framework is flexible enough to support a variety of different
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data “silos,” e.g., databases for meta-materials, bio-sequences, etc.,
which may become another application of the project in later
work.

Future efforts of the ColabFit project will be to explore addi-
tional techniques for analyzing novel properties of datasets, like
those described in Sec. IV B, which have been shown in some cases to
correlate with generalizability and fitting errors of resultant models,
and to develop metrics based on precision and recall scores for char-
acterizing the utility of test sets. Further code development will also
be done in order to expand the colabfit-tools package, with a focus
on developing a Python API for accessing/contributing data, con-
structing datasets, and running consistency checks over contributed
data (which is currently only done by hand). Perhaps most impor-
tant for leveraging ColabFit’s full potential will be gaining a better
understanding of data interoperability and novel training strategies
that can incorporate data across multiple datasets, levels of theory,
and simulation parameters. As the ColabFit Exchange grows and
matures, we anticipate it being an important tool for developing
novel (meta-)learning strategies, which have recently been applied
to atomistic datasets with promising results.87

We invite the community to upload data via the Github repos-
itory at https://github.com/colabfit/data-lake and will work closely
with dataset developers who wish for their data (and models) to be
findable, accessible, interoperable, and reusable.

SUPPLEMENTARY MATERIAL

The supplementary material includes additional details about
Delaunay Component Analysis calculations, including sensitivity
analysis for several hyperparameters.
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