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Conventional Monte Carlo simulations are stochastic in the sense
that the acceptance of a trial move is decided by comparing a com-
puted acceptance probability with a random number, uniformly
distributed between 0 and 1. Here, we consider the case that the
weight determining the acceptance probability itself is fluctuat-
ing. This situation is common in many numerical studies. We show
that it is possible to construct a rigorous Monte Carlo algorithm
that visits points in state space with a probability proportional to
their average weight. The same approach may have applications
for certain classes of high-throughput experiments and the anal-
ysis of noisy datasets.

Monte Carlo simulations | transition state | basin volumes
stochastic optimization | free-energy calculation

onte Carlo simulations aim to sample the states of the sys-

tem under study such that the frequency with which a given
state is visited is proportional to the weight (often “Boltzmann”
weight) of that state. The equilibrium distribution of a system,
that is, the distribution for which every state occurs with a prob-
ability proportional to its (Boltzmann) weight, is invariant under
application of a single Monte Carlo step. Algorithms that satisfy
this criterion are said to satisfy “balance” (1). Usually, we impose
a stronger condition, “detailed balance,” which implies that the
average rate at which the system makes a transition from an arbi-
trary “old” state (o) to a “new” state (n) is exactly balanced by
the average rate for the reverse rate. The detailed balance condi-
tion is a very useful tool to construct valid Markov chain Monte
Carlo (MCMC) algorithms. We can write the detailed balance
condition as

P(x0) Pyen(0—1) Pacc(0—1)=P(Xp) Pgen(1n—>0) Pacc(n—0),
(1]

where P(x;) denotes the equilibrium probability that the system
is in state ¢ (in this case, 7 can stand for o or n) characterized by
a (usually high-dimensional) coordinate X;. Pgen(7 — j) denotes
the probability to generate a trial move from state ¢ to state j.
In the simplest case, Pgen(7 — j) may be the probability to gen-
erate a random displacement that will move the system from x;
to x;, but in general the probability to generate a trial move may
be much more complex (e.g., ref. 2). Finally Pac.(i — j) denotes
the probability that a trial move from state 7 to state j will be
accepted.

Many simple Monte Carlo (MC) algorithms satisfy in addi-
tion microscopic reversibility, which means that Peen(i — j) =
Pgen(j — ©). In that case, detailed balance implies that

Picc(0 = n) _ P(xn)
Pac(n = 0)  P(x,)°

There are many acceptance rules that satisty this criterion. The
most familiar one is the so-called Metropolis rule (3):

[2]

Picc(0 — n) = Min {1, igi:; } [3]
The acceptance probability for the reverse move follows by per-
muting o and n. In the specific case of Boltzmann sampling
of configuration space, where the equilibrium distribution is
proportional to the Boltzmann factor, P(x;) ~ exp(—U;/ks T),
where U; is the potential energy of the system in the state
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characterized by the coordinate x;, 7 is the absolute tempera-
ture, and kg is the Boltzmann constant. In that case, we obtain
the familiar result

Picc(0 = n) =Min{1,exp[— (U, — U,)/ks T]}. [4]
Monte Carlo Simulations with Noisy Acceptance Rules. There are
many situations where conventional MCMC cannot be used
because the quantity that determines the weight of a state ¢
is, itself, the average of a fluctuating quantity. Specifically, we
consider the case of weight functions fluctuating according to a
Bernoulli process, that is, in an intermittent manner, although
our approach is not limited to Bernoulli processes. Examples
that we consider are “committor” functions, or the outcome of
a stochastic minimization procedure.

Note that the problem that we are discussing here is differ-
ent from the cases considered by Bhanot and Kennedy (4) and
by Ceperley and Dewing (5). As we discuss below, these earlier
papers consider cases where the weights are nonlinear functions
of a fluctuating argument (e.g., an action or an energy), in which
case the average of the function is not equal to the function of
the average argument. In contrast, we consider the case where
the probability to sample a point is given rigorously by the aver-
age of the stochastic estimator of the weight function.

To give a specific example, we consider the problem of com-
puting the volume of the basin of attraction of a particular energy
minimum 7 in a high-dimensional energy landscape (6-10). The
algorithms developed in refs. 6-9 rely on the fact that, for every
point x in a d-dimensional configuration space, we can determine
unambiguously whether this point belongs to the basin of attrac-
tion of minimum :: If a (steepest-descent or similar) trajectory
that starts at point x ends in minimum 4, the “oracle function”
O;(x) =1, and otherwise it is zero.

Significance

Markov chain Monte Carlo is the method of choice for sam-
pling high-dimensional (parameter) spaces. The method re-
quires knowledge of the weight function (or likelihood func-
tion) determining the probability that a state is observed. How-
ever, in many numerical applications the weight function itself
is fluctuating. Here, we present an approach capable of tack-
ling this class of problems by rigorously sampling states pro-
portionally to the average value of their fluctuating likelihood.
We demonstrate that the method is capable of computing the
volume of a basin of attraction defined by stochastic dynam-
ics as well as being an efficient method to identify a tran-
sition state along a known reaction coordinate. We briefly
discuss how the method might be extended to experimental
settings.
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However, many minimizers are not deterministic—and hence
the oracle function is probabilistic. (In fact, historical evidence
suggests that ancient oracles were probabilistic at best). In that
case, if we start a number of minimizations at point x, some
will have O;(x) =1 and others have O;(x) =0. We denote with

P((; ) (x) the average value of the Bernoulli process defined by the

oracle function O;(x). In words, Péi)(x) is the probability that
the oracle function associated with point x has a value of one.

We could obtain an estimate for the average weight Pg ) (x)=
(09 (x)) by sampling the same point very many times. How-
ever, such an approach would be prohibitively expensive. Below
we show that one can construct a rigorous algorithm to sam-

ple according to the weight Pg ) (x), without having to obtain an

accurate estimate of (O (x)).

First, however, we generalize the concept of a basin volume v;
as the integral of the probability (the “probability mass”) that a
stochastic minimization will end up in basin 4:

viz/deg)(x). [S]

Clearly, for a deterministic process, we recover the original defi-
nition of a basin volume. Moreover, we have

Q
Z Vi = Vtotal, [6]
=1

where € is the number of distinct minima. This equation
expresses the fact that every trajectory must end up somewhere.
If we wish to compute the volume v; in Eq. 5, we must be able to

sample points with a probability Pg ) (x), even though we do not
know this function a priori.

Naive MC Algorithm. We first describe a naive (and very ineffi-
cient) but rigorous MC algorithm to sample stochastic weight
functions. After that, we show how the algorithm can be made
more efficient.

Our aim is to construct a MC algorithm that will visit points
x with a probability proportional to Po(x). The normalized
configuration-space density p(x) is then proportional to Po(x).
If we can sample configuration space with this density p(x), the
computation of the volume in Eq. 5 becomes a free-energy cal-
culation, for which standard techniques exist (2).

Let us consider two points (x and x’) between which we can
carry out trial moves. The steady-state configuration-space den-
sity p(x) is determined by our choice for the acceptance proba-
bility Pac:

P(X) Pace(x = X)) = p(X') Pace (X' — X). [7]
The average acceptance probability for a very large number of
trial moves from point x to point x' is (O(x')) = Po(x'). If we
consider a large number of trial moves in the reverse direction,

the acceptance probability is Po(x). In steady state, the popula-
tions should be such that detailed balance holds and hence

p(x)Po(x') = p(x') Po x) (81
or
%) Poly)
%)~ Polx) ®l

In other words, trial moves that are accepted with a probability
equal to the instantaneous value of the oracle function generate
the correct distribution of points in configuration space, propor-
tional to Po(x).

Note that in this naive version of the algorithm, the accep-
tance rule is not the Metropolis rule that considers the ratio of
two weights. Here it is the probability itself. Hence, whenever the
probability becomes very low, the acceptance of moves decreases
proportionally. We address this problem in what follows.

Frenkel et al.

“Configurational-Bias” Approach. With the naive algorithm de-
scribed above, the acceptance of moves becomes small when the
system moves into a region of configuration space where Po (x)
is low, and hence the “diffusion coefficient” that determines the
rate at which configuration space is sampled becomes small. As
a consequence, sampling of the wings of the distribution may
become prohibitively slow. This problem can be alleviated by bas-
ing the Monte Carlo sampling on the average weight of a larger
number of trial points. To implement this sampling, we use an
approach that resembles configurational-bias MC (CBMC) (11),
but is different in some respects. The key point to note is that,
if we know all random numbers that determine the value of the
oracle function—including the random numbers that control the
behavior of the stochastic minimizer—then in the extended space
of coordinates plus random numbers, the value of the oracle
function is always the same for a given point.

We can then generate a random walk in this extended space,
between points that are surrounded by a “cloud” of k£ points
where we compute the oracle function (at this stage k is arbi-
trary). We denote the central point (i.e., the one to which or
from which moves are attempted) by xg, where “B” stands for
“backbone.” The reason for calling this point a backbone point
is that we will be sampling the & points connected to it, but
we will not compute the oracle function at the backbone point.
Hence, xg may even be located in a region where the oracle
function is strictly zero (Fig. 1). We introduce these backbone
points because it facilitates generating a random walk that satis-
fies detailed balance.

The coordinates of the & cloud points around xg are given by

xg,i = XB + A; [10]

with ¢={1,2,--- ,k}. The vectors A are generated by some
stochastic protocol; for example, the vectors may be uniformly
distributed in a hypersphere with radius Ry,. The precise choice

Il
— o

XB,i = XB + A;

Fig. 1. Cloud sampling. Shown is an illustration of the configurational-
bias-like approach for a simple oracle defined by the gray shaded region,
such that O = 1 inside the gray boundary and © = 0 outside it. Blue and red
squares denote typical accepted and rejected backbone points xg, respec-
tively. The cloud points Xg, ; = Xg + A; are represented by orange circles. In
this example we randomly sample k =4 cloud points from a circle of fixed
radius centered on the backbone point (dotted circles). Each cloud is sam-
pled with probability proportional to the Rosenbluth weight defined in Eq.
12. Note that backbone points (e.g., the one at top right) may fall outside
the region where O =1 because the Rosenbluth weight (Eq. 12) does not
depend on the value of the oracle at the backbone point.
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of the protocol does not matter, as long as the rules are not

changed during the simulation. For a fixed protocol, the set xg ;

is uniquely determined by a set of random numbers Rp. Finally,

we note that the value of the oracle function O, for a given point

xp,; is uniquely determined by another set of random numbers

Ro (e.g., the random numbers in a stochastic minimization).
We now define an extended state space

&5 = {x8, R, Roo}- [11]

In this space, the oracle functions are no longer fluctuating
quantities.

We can now construct a MCMC to visit (but not sample) back-
bone points. To this end, we compute the “Rosenbluth weight”
of point Xg as

k
W(ks) = Y Ouw, [12]
i=1

where O; =O(Xs,;) and w; =w(Xp,;) denotes a (Boltzmann)
biasing factor. For unbiased sampling, w; = 1, but for biased sam-
pling, as is used for instance in thermodynamic integration (2,
6-9), other choices for w; can be used.

We can then construct a MCMC algorithm where the accep-

tance of a trial move from the old %"’ to the new %"’ is given by

<(n)
Puce(0 — n) = Min{ 1, Wik ) | [13]
W (%)
As the probabilities to generate the trial directions for forward
and backward moves and the generation of random numbers that
determine the value of the oracle function are also uniform, the
resulting MC algorithm satisfies superdetailed balance (2, 11)
and a given backbone point %g will be visited with a probability
proportional to W (kg). It is important to note that the accep-
tance rules for the Markov chain determine transition proba-
bilities between the backbone points, but that these points are
never sampled. Below, we show that we sample the values of the
observable quantities only for the cloud points.

Note that during a trial move, the state of the old point is not
changed, and hence it retains the same trial directions (hence
the same set {R;}) and the same set {R,}. If the trial move is
rejected, it is this “extended point” that is sampled again. This is
different from standard CBMC.

The approach of Eq. 13 can be easily incorporated into more
sophisticated sampling schemes such as parallel tempering (PT)
(12, 13), as discussed in Supporting Information and shown in
Fig. 2.

Sampling. We have shown that backbone points will be visited
with a probability proportional to its instantaneous Rosenbluth
weight Pg(Xg) ~ W (%g). However, it is not our aim to sample
the backbone points but the points in the cloud around the back-
bone. Let us consider two such points 4, and i, that belong to
the cloud of the old and new of backbone points. The condition
for detailed balance states that the forward and reverse fluxes
between points i, and 4, must balance,

P (&) Peen (%)) Pac (i) Pace((0 — )
= P(EUY) Paen (X)) Pect (i) Pace(n — 0), [14]
where Py (i,) denotes the probability to select point 4, from

among the cloud of points around x{” [and similarly, for
Psei(i0)]- Note that this detailed balance condition comes on top
of the one for transitions between the backbone points, which
resulted in the acceptance rule 13 for the acceptance of moves
between those backbone points. In contrast, Eq. 14 expresses the
detailed balance condition for transitions between cloud points.
In what follows, we assume that the probability Pgen(X) to gener-
ate cloud points around a given backbone point does not depend

6926 | www.pnas.org/cgi/doi/10.1073/pnas.1620497114
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Fig. 2. Deterministic oracle. Shown is volume calculation for an

n-dimensional hypersphere with radius R=0.5 and n € [2, 20]. Numerical
results (symbols) were obtained by the configurational bias approach of Eq.
13, with k cloud points and MBAR. PT refers to calculations performed by
parallel tempering, described in Supporting Information. Inset shows mean
square displacement computed by Eq. 17. Solid blue curves denote the ana-
lytical results. The symbols refer to the numerical results. The error bars, cor-
responding to twice the SE estimate for the computed volume, are smaller
than the size of the symbols.

on X. As a consequence, the probabilities Py, for forward and
backward moves cancel, and we drop Pgn from the detailed-
balance equation.

To achieve the desired sampling of cloud points, we impose
that a given cloud point i =xg ; is selected with a probability

__O@w(@)  _ O()w(i)
Y 0Gw) W)
If we now make use of the fact that the probability to visit a given
backbone point at %g is proportional to W (Xg), it follows that the
overall probability P(i;%g) that a cloud point ¢ will be sampled
is proportional to the desired weight:
O(i)w(i)
W (%g)

[15]

Psel (7«)

P(i;%p) ~ W (%) = O(i)w(i).
But note that O(z) has not yet been averaged. If we perform the
average over the oracle function, we obtain

P(i) ~ (O(i)) w().

Hence, by combining our rule for visiting backbone points with a
Rosenbluth-style selection of the point to be sampled, we ensure
that we sample with the correct weight.

The approach that we describe here is better than the naive
algorithm because it achieves faster “diffusion” through parts of
configuration space where (O)w is small.

However, even though Rosenbluth-style sampling ensures that
all points in space are sampled with the correct frequency, it is
not an efficient algorithm. The reason is obvious: To compute the
weights W, the oracle function must be computed for & points,
and yet in naive Rosenbluth sampling, only one point would be
sampled.

Fortunately, this drawback can be overcome. Rather than sam-
pling one point at a time, we take steps between backbone points
sampled according to Eq. 13 and compute the quantity to be sam-
pled for all & cloud points belonging to the current backbone
point, as described below. An illustration of the method is given
in Fig. 1.

Frenkel et al.
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For every backbone point Xg visited, we can compute the
observable (say A) of the set of k cloud points as follows:

i1 OiwiAi
Z?:l Oiw;
The average of A during a MCMC simulation of L steps is

L k

1 OiwiA;

7 Z <Z:Z—lw) , [17]
J= J

Asamplcd = [16]

j=1 25:1 Oiwi

where the index j labels the different backbone states visited.

Combine with “Waste-Recycling” MC. Efficiency can be further
improved by using the approach underlying “waste-recycling”
MC (14). This approach allows us to sample all trial cloud
points in the sampling, even if the actual trial backbone move is
rejected. The approach of ref. 14 allows us to combine the infor-
mation of the accepted and the rejected states in our sampling.
Specifically, we denote the probability to accept a move from an
old state o to a new state n by Pac(0 — n); then, normally we
would sample Agamplea () if the move is accepted and Agampled(©0)
otherwise. However, we can do better by combining the informa-
tion and sample

A = P;CC(O — 1) Asampled (1) + [1 — P;cc(o — 1)) Asamplea (0),
[18]

where P, denotes the acceptance probability for any valid

MCMC algorithm (not just Metropolis). In fact, it is convenient

to use the symmetric (Barker) rule (15) to compute P;.. In that
case, we would sample

(Zf:l OiwiAi)nld + (Zf:l OlwiAi)
(Zle Oiwz‘) ., + (Zle Oiwi)n

ol ew

Awr = e [19]

Hence, all 2k points that have been considered are included in
the sampling.

Numerical Results

Basin Volume Calculations. To test the proposed algorithm we
compute the basin volume (probability mass) for a stochas-
tic oracle function as defined in Eq. 5. We choose a few sim-
ple oracle functions, for which the integral in Eq. 5 can be
solved analytically. The volume calculations were performed
using the multistate-Bennett acceptance ratio (MBAR) method
(16) described in ref. 9. As described in ref. 9, a high-dimensional
volume calculation is in essence a free-energy calculation, where
minus the log of the volume plays the role of the free energy.

We compute the dimensionless free-energy difference between
a region of known volume };ef: —1In Vier + ¢ and the equilib-
rium distribution of points sampled uniformly within the basin
JA‘m[ = —In Viot + ¢, estimated by MBAR up to an additive con-
stant c. Because fref =-— lnAV,ef is known, we obtain the basin vol-
ume as fiot = fref + (fior — fret).- We use 15 replicas with positive
coupling constants for all examples discussed herein; see ref. 9
for details of the method.

We first tested the method for a deterministic oracle, namely
a simple n-dimensional hypersphere of known volume V,, pa1 =
7"/2R"™ /T'(n/2+1) with radius R = 0.5 and n € [2, 20]. As shown
in Fig. 2 we correctly recover the volume and the mean-square
displacement, using the acceptance rule defined in Eq. 13 for
k =10 cloud points. Fig. 2 suggests that the algorithm is sampling
the correct equilibrium distributions.

Next, we tested the method for a stochastic oracle function
defined such that

1 if x| <R
Po(x) ~ {exp[—ux\ ~ RN if H >p 20

Frenkel et al.

with volume
V =2(R"/n + A" exp(R/N)(n, R/A)x"/*R™ /T (n/2),

where I'(a,z) is the incomplete gamma function. Results for
dimensions n € [2,20], R=0.5, and A=0.1 are shown in Fig.
3. Note that, despite the volume being finite, the basin is
unbounded in the sense that the average value of the oracle
tends to zero only as |x| — co. As the dimensionality of the basin
increases, all of the volume will concentrate away from the center
of mass in regions of space where the oracle has a high probabil-
ity of returning 0. Hence, it becomes more difficult for a ran-
dom walker to diffuse efficiently as the dimensionality of space
increases. Evidence that the sampling efficiency goes down for
small numbers of cloud points is shown in Fig. 3. For n < 6 results
seem to be independent of the number of cloud points. However,
growing deviations are observed for increasing n and accuracy
increases significantly for a growing number of cloud points &.
For large n, the largest contribution to the integral comes from
values of |z| where the average value of the oracle function is
very small [O(107°) for n = 20]. We carried out our simulations
with at most 100 cloud points. In that case, inefficient sampling
could be expected when the average oracle function is signifi-
cantly less than 0.01. As Fig. 3 shows, for the case of k£ =100 sys-
tematic deviations from the analytical result show up for n > 11,
where the dominant contributions come from points where the
average oracle function is O(107?).

Transition-State Finding. The algorithm that we described above
has wider applicability than the specific examples that we dis-
cussed. As an illustration of a very different application, we show
that our approach can be used to efficiently identify the transi-
tion state along a known reaction coordinate.

Note that points in the transition-state ensemble (in the one-
dimensional case: just one point) are characterized by the prop-
erty that the committor has an average value of 0.5. However,
any individual trajectory will either be crossing (“1”) or non-
crossing (“0”). Hence, the “signal” is stochastic. As an illustra-

2.8
2.6 |

P =
24 - ‘ /(./5 ‘E.\,\iﬁi‘ - ;
22t f “ﬁ\} \
1.8+ ,P/
1.6/

/ exact + k=10
14§ + k=1+ k=100
0 —

2 4 6 8 10 12 14 16 18 20

n
Fig. 3. Stochastic oracle. Shown is volume calculation for the oracle

defined in Eq. 20 with radius R=10.5, A=0.1, and dimensions n € [2, 20].
Symbols (lines are guide to the eye) are numerical results obtained by the
configurational-bias approach of Eq. 13 with k cloud points and MBAR. The
light blue curve denotes the analytical results and error bars refer to twice
the SE as estimated by MBAR. At large n accuracy increases by increasing k as
the random walker diffuses more efficiently through regions of space where
(O) < 1. However, if the integral is dominated by points where the average
value of the oracle function is (much) less than the inverse of the number of
cloud points, slow convergence leads to systematic errors in the sampling.
Analogous results obtained by parallel tempering can be seen in Fig. S1.
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Pt

tion, we consider the (trivial) one-dimensional case of a particle
with kinetic energy K sampled according to the one-dimensional
Maxwell-Boltzmann distribution, crossing a Gaussian barrier
with height Ui = 30kT and variance o = 1. (We choose as our
unit of length o, and hence in our reduced units kT = o>.) We
define the oracle symmetrically such as

1 #E > Ue— Ua)
O(‘"”)—{o it K < Uy — Ulx)

and constrain the walk to reject moves for which the potential
energy is below that of the initial position, such that O =0 if
U(z) < U(xo); we choose mp = 20. By thus constraining the sam-
pling, we are excluding the “reactant” and “product” states from
our sampling. In Fig. 4 we show results for backbone step-size
0.250, cloud radius 0.250, and varying number of cloud points k.
One can clearly see that as the number of cloud points increases
the system diffuses faster toward the transition state whereas for
the traditional single-point sampling the walker does not move
at all from the initial position.

[21]

Relation to Earlier Work

The problem of Monte Carlo sampling in the presence of noise
has been discussed by Bhanot and Kennedy (4) and Ceperley and
Dewing (5).

Bhanot and Kennedy (4) considered how to construct an
unbiased estimator of an exponential function (e.g., a ratio of
Boltzmann weights) with a fluctuating argument. This method
involves constructing an estimator on the basis of a number
of independent samples. The method is subject to certain lim-
itations (it is not guaranteed to generate acceptance probabil-
ities between 0 and 1) and, crucially, it addresses the problem
that the average of an exponential function with a fluctuat-
ing argument is not equal to the function of the average argu-
ment. In this respect, the work of ref. 4 is similar to that of
Ceperley and Dewing (5) who considered the problem of per-
forming Boltzmann MCMC sampling in cases where the energy
function is noisy. As in the case of ref. 4, the Boltzmann

TR

o 0 A ; [ !
? l|"‘l~, ,M“.‘."w "M“”r” \‘.\“yw.‘l
Ui i | ald H1""1' il W i |1-'|| '“
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k=1 — k=50
ol ~ E=10— k=15
o = k=25
0 200 400 600 800 1000

MC steps / 200

Fig. 4. Transition-state finding. The simple case of one-dimensional barrier
crossing is defined (symmetrically) by the stochastic oracle in Eq. 21. A series
of random walks are performed according to Eq. 13 with different numbers
of cloud points k. The walkers are constrained to reject moves for which
the energy is below that of the initial position, thus excluding reactants and
products from the sampling. Shown is the position of the walker backbone
along the reaction coordinate as a function of the number of MCMC steps.
For increasing k the random walkers diffuse more efficiently and therefore
converge faster to the transition state. Traditional single-point sampling
does not move at all from the initial condition.
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weight is a nonlinear function of the energy and therefore the
Boltzmann factor corresponding to the average energy is not
the same as the average of the Boltzmann factor obtained by
sampling over energy fluctuations. Specifically, Ceperley and
Dewing (5) consider the case where the calculation of the
energy function is subject to statistical errors with zero mean.
In that case, we cannot use the conventional Metropolis rule
Pice =Min{1, exp(—BAu)}, where u is the instantaneous value
of the energy difference, because what is needed to compute
the correct acceptance probability is exp(—S(Awu)), but what is
sampled is (exp(—SAu)) # exp(—B{Au)). Ceperley and Dew-
ing (5) showed that if the fluctuations in Aw are normally dis-
tributed, with constant variance o, then we can still get an algo-
rithm that samples the correct Boltzmann distribution, if we use
as the acceptance rule

Pace = Min{1, exp[—BAu — (B0)?/2]}. [22]

Note that the situation considered in refs. 4 and 5 is very dif-
ferent from the case that we consider here, as we focus on the
situations where the average of the (fluctuating) oracle functions
is precisely the weight function that we wish to sample. How-
ever, the present approach allows us to rederive the Ceperley
and Dewing (5) result. We note that, as before, we can con-
sider extended states characterized by the spatial coordinates of
the system and by the random variables that characterize the
noise in the energy function. To discuss the approach of Ceperley
and Dewing (5) in the present language, it is easiest to consider
the case that the variance in the energy of the individual states
is normally distributed, with constant variance o,. The average
Boltzmann factor of extended state 4 is then

(P1) = exp[—B(u),] exp[+(Bos) /2] [23]

and therefore

{Pn) = exp[—B(Auw)]. [24]

Hence, the average Boltzmann factor of any state ¢ is still pro-
portional to the correct Boltzmann weight. However, an MCMC
algorithm using the instantaneous Boltzmann weights would not
lead to correct sampling as superdetailed balance yields

Pn(xn)
m = exp[—BAu] [25]
and hence
<1;"> — exp[—B(Au) + (80)?/2], 26]
which is not equal to
(Pn) _
Py exp[—B(Au)]. [27]

If, however, we use the Ceperley-Dewing acceptance rule, we
would get

<%> = exp[—B(Au) + (80)?/2] x exp[—(B0)? /2]

(Pn)
(Po)”

Hence, with this rule the states would (on average) be visited
with the correct probability. Note that, as the noise enters nonlin-
early in the acceptance rule, the Ceperley—-Dewing algorithm is
very different from the one that we derived above. Note also that
the present derivation makes it clear that the Ceperley-Dewing
algorithm can be easily generalized to cases where the noise in
the energy is not normally distributed, as long as the distribution
of the noise is state independent.

[28]

— expl—B(Au)] =
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Conclusions and Outlook

Thus far, the algorithm described above was presented as a
method to perform MC sampling in cases where the weight func-
tion itself is fluctuating.

However, we suggest that the method is not limited to numer-
ical sampling: It could be used to steer sampling of experimental
control parameters in experiments that study stochastic events
(e.g., crystal nucleation, cell death, or even the effect of adver-
tising). Often, the occurrence of the desired event depends on
a large number of variables (temperature, pressure, pH, concen-
tration of various components) and we want to select the optimal
combination. However, as the desired event itself is stochastic,
individual measurements provide little guidance. One might aim
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to optimize the conditions by accumulating sufficient statistics
for individual state points. However, such an approach is expen-
sive. The procedure described in the preceding sections suggests
that it may be better to perform experiments in a cloud of state
points around a backbone point. We could then accept or reject
the trial move to a new backbone state, using the same rule as
in Eq. 13. In this way, the experiment could be made to evolve
toward “interesting” regions of parameter space.
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