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Proteins require high developability—quantified by expression,
solubility, and stability—for robust utility as therapeutics, diagnos-
tics, and in other biotechnological applications. Measuring tradi-
tional developability metrics is low throughput in nature, often
slowing the developmental pipeline. We evaluated the ability of
10 variations of three high-throughput developability assays to
predict the bacterial recombinant expression of paratope variants
of the protein scaffold Gp2. Enabled by a phenotype/genotype
linkage, assay performance for 105 variants was calculated via
deep sequencing of populations sorted by proxied developability.
We identified the most informative assay combination via cross-
validation accuracy and correlation feature selection and demon-
strated the ability of machine learning models to exploit nonlinear
mutual information to increase the assays’ predictive utility. We
trained a random forest model that predicts expression from assay
performance that is 35% closer to the experimental variance and
trains 80% more efficiently than a model predicting from se-
quence information alone. Utilizing the predicted expression, we
performed a site-wise analysis and predicted mutations consistent
with enhanced developability. The validated assays offer the abil-
ity to identify developable proteins at unprecedented scales, re-
ducing the bottleneck of protein commercialization.

developability | protein engineering | predictive modeling

Acommon constraint across diagnostic, therapeutic, and in-
dustrial proteins is the ability to manufacture, store, and use

intact and active molecules. These protein properties, collec-
tively termed developability, are often associated to quantitative
metrics such as recombinant yield, stability (chemical, thermal, and
proteolytic), and solubility (1–5). Despite this universal importance,
developability studies are performed late in the commercialization
pipeline (2, 4) and limited by traditional experimental capacity (6).
This is problematic because 1) proteins with poor developability
limit practical assay capacity for measuring primary function, 2)
optimal developability is often not observed with proteins
originally found in alternative formats [such as display or two-
hybrid technologies (7)], and 3) engineering efforts are limited
by the large gap between observation size (∼102) and theoret-
ical mutational diversity (∼1020). Thus, efficient methods to
measure developability would alleviate a significant bottleneck
in the lead selection process and accelerate protein discovery
and engineering.
Prior advances to determine developability have focused on

calculating hypothesized proxy metrics from existing sequence and
structural data or developing material- and time-efficient experi-
ments. Computational sequence-developability models based on
experimental antibody data have predicted posttranslational
modifications (8, 9), solubility (10, 11), viscosity (12), and overall
developability (13). Structural approaches have informed sta-
bility (14) and solubility (10, 15). However, many in silico models
require an experimentally solved structure or suffer from com-
putational structure prediction inaccuracies (16). Additionally,

limited developability information allows for limited predictive
model accuracy (17). In vitro methods have identified several
experimental protocols to mimic practical developability require-
ments [e.g., affinity-capture self-interaction nanoparticle spectros-
copy (18) and chemical precipitation (19) as metrics for solubility].
However, traditional developability quantification requires
significant amounts of purified protein. Noted in both fronts
are numerous in silico and/or in vitro metrics to fully quantify
developability (1, 5).
We sought a protein variant library that would benefit from

isolation of proteins with increased developability and demon-
strate the broad applicability of the process. Antibodies and
other binding scaffolds, comprising a conserved framework and
diversified paratope residues, are effective molecular targeting
agents (20–24). While significant progress has been achieved
with regards to identifying paratopes for optimal binding
strength and specificity (25, 26), isolating highly developable
variants remains plagued. One particular protein scaffold, Gp2,
has been evolved into specific binding variants toward multiple
targets (27–29). Continued study improved charge distribution
(30), hydrophobicity (31), and stability (28). While these studies
have suggested improvements for future framework and par-
atope residues (including a disulfide-stabilized loop), a poor
developability distribution is still observed (32) (Fig. 1 A and B).
Assuming the randomized paratope library will lack similar pri-
mary functionality, the Gp2 library will simulate the universal
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applicability of the proposed high-throughput (HT) developability
assays.
We sought HT assays that allow protein developability dif-

ferentiation via cellular properties to improve throughput. Var-
iations of three primary assays were examined: 1) on-yeast
stability (Fig. 1 C and D)—previously validated to improve the
stability of de novo proteins (33), antimicrobial lysins (34), and
immune proteins (35)—measures proteolytic cleavage of the
protein of interest (POI) on the yeast cell surface via fluorescence-
activated cell sorting (FACS). We extend the assay by per-
forming the proteolysis at various denaturing combinations to
determine if different stability attributes (thermal, chemical,
and protease specificity) can be resolved; 2) Split green fluo-
rescent protein (GFP, Fig. 1 E and F)—previously used to
determine soluble protein concentrations (36)—measures the
assembled GFP fluorescence emerging from a 16–amino acid
fragment (GFP11) fused to the POI after recombining with the
separably expressed GFP1-10. We extend the assay by utilizing
FACS to separate cells with differential POI expression to
increase throughput over the plate-based assay; and 3) Split

β-lactamase (Fig. 1 G and H)—previously used to improve
thermodynamic stability (37) and solubility (38)—measures
cell growth inhibition via ampicillin to determine functional
lactamase activity achieved from reconstitution of two enzyme
fragments flanking the POI. We expand assay capacity by deep
sequencing populations grown at various antibiotic concentra-
tions to relate change in cell frequency to functional enzyme
concentration.
In this paper, we determined the HT assays’ abilities to predict

Gp2 variant developability. We deep sequenced the stratified
populations and calculated assay scores (correlating to hypoth-
esized developability) for ∼105 Gp2 variants (Fig. 1I). We then
converted the assay scores into a traditional developability metric
by building a model that predicts recombinant yield (Fig. 1J). The
assays’ capacity enabled yield evaluations for >100-fold tradi-
tional assay capacity (Fig. 1K, compared to Fig. 1B) and provide
an introductory analysis of factors driving protein developability by
observing beneficial mutations via predicted developable proteins
(Fig. 1L).

Fig. 1. HT assays were evaluated for the ability to identify protein scaffold variants with increased developability. (A and B) Gp2 variant expression, com-
monly measured via low-throughput techniques such as the dot blot shown, highlights the rarity of ideal developability. (C and D) The HT on-yeast protease
assay measures the stability of the POI by proteolytic extent. (E and F) The HT split-GFP assay measures POI expression via recombination of a genetically fused
GFP fragment. (G and H) The HT split β-lactamase assay measures the POI stability by observing the change in cell-growth rates when grown at various
antibiotic concentrations. (I and J) Assay scores, assigned to each unique sequence via deep sequencing, were evaluated by predicting expression (Fig. 3).
(K and L) HT assay capacity enables large-scale developability evaluation and can be used to identify beneficial mutations (Fig. 4).
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Fig. 2. Developability characterization of loop-diversified Gp2 library. (A) Sequence alignment of assayed sequence classes: GaR (single-variant control), Stop:
(sequences with stop codon, Z), CC+: (hypothesized to be more developable), CC−: (hypothesized to be less developable). (B) Diversified paratope frequency
heatmap. (C) Histogram depicting the pairwise distances between 190,483 full-length and genotypically unique variants. (D) Assay performance distributions
divided by class. (Top) Various on-yeast protease assay reaction conditions. (Bottom) Bacterial assays performed in strain Iq and strain SH. GaR error bars
represent the SD (n = 3 trials). Total unique variants for Stop, CC+, and CC− range 93,178 to 140,229 for HT assays and 431 to 447 for yield (reference
SI Appendix, Fig. S2). (E) The Spearman’s rank correlation coefficient and (F) MI between HT assays and yield.
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Results
Gp2 Paratope Library Quantification. We first evaluated the assays’
ability to separate sequence classes with a hypothesized differ-
ence in developability. A total of 204,174 observed Gp2 variants
belonged to one of four classes (Fig. 2A): GaR: a thermostable
variant (27), Stop: 13,690 nonfunctional truncated variants; CC+:
128,854 variants with a hypothesized (28) stabilizing cysteine pair
at sites 7 and 12; CC−: 61,629 variants without conserving sites 7
and 12. CC+, CC−, and Stop classes utilize a previously optimized
conserved framework (28) and two paratope loops, each with 6 to
8 “NNK” degenerate codons encoding all 20 amino acids
(Fig. 2B). The library was widely diversified, averaging 13.1 dif-
ferences between observed sequence pairs (Fig. 2C).

Recombinant Yield as a Traditional Developability Metric.We sought
a traditional developability metric that was translationally rele-
vant and scalable to train and validate predictive models. A key
step in developing and using a protein involves recombinant
production. Bacterial cells are often chosen due to affordability,
ease, and speed (39). However, with limited production ma-
chinery, expressed proteins must rely on inherent developability
parameters to achieve high soluble concentrations. Also, con-
sidering alternative assays require high purified protein quanti-
ties, we selected bacterial recombinant yield as the metric of
interest. The Gp2 titer in the soluble lysate fraction was mea-
sured using a chemiluminescent quantitative dot blot protocol
(40) via a C-terminal His6 tag (Fig. 1 A and B).
Different bacterial strains have been evolved containing ad-

ditional machinery to obtain increased yield. We chose to in-
clude two Escherichia coli strains (T7 Express lysY/Iq (Iq) and
SHuffle T7 Express lysY (SH), New England Biolabs) for im-
proved developability resolution. SH was chosen to stabilize
disulfide formation and increase cysteine-free variant yields (41).
This was confirmed by GaR having a significantly higher yield in
SH despite not having cysteines (P < 0.05 in one-way Student’s
t test using trial-averaged yield, n = 8 plates per strain).
The recombinant yield of unique Gp2 sequences in each class

was measured in triplicate (Fig. 2D):GaR (both strains), Stop (Iq:
37 Gp2 variants, SH: 46), CC− (Iq: 98, SH: 117), and CC+ (Iq:
296, SH: 284). GaR had a significantly higher yield than most
Stop sequences (Iq: 100%, SH: 63% of unique Stop sequences,
P < 0.05 in one-way Student’s t test using plate-averaged GaR
SD, n = 3 trials), validating the dot blot controls while suggesting
slight noise with SH. CC+ did not have significantly different
yields than CC− (P = 0.40 in two-way Mann–Whitney U test) in
Iq, while the populations were significantly different in SH (P <
0.05, one-way Mann–Whitney U test). This implies SH is forming
a disulfide bond, thus increasing CC+ sequence developability.

HT Developability Assays. The Gp2 variants were sorted into
populations of varying developability and were assigned an HT
assay score as the mean over three independent trials (SI Ap-
pendix, Fig. S1). Below we motivate score calculation, followed
by assay score distribution analysis (Fig. 2D and SI Appendix,
Fig. S2).
On-yeast stability. The on-yeast stability assay evaluates protein
stability by measuring proteolytic cleavage (Fig. 1C). Using yeast
surface display technology (42), the POI is expressed between
two tags (N-terminal HA and C-terminal cMyc). The protein-
displaying yeast are exposed to a protease at a concentration that
produces a distribution of cleavage (as determined by cMyc:HA
ratio) across protein variants. The Gp2 library was sorted into four
populations (Fig. 1D). Sequencing scored every collected variant on
a cell-weighted average: 1 (intact), 2/3, 1/3, and 0 (fully cleaved).
We performed the proteolysis using various conditions to

determine if additional stability metrics could be obtained (SI
Appendix, Fig. S1). From our baseline condition (PPK37), we
studied chemical stability by adding 1.5 M urea (PUrea) or 0.5 M

guanidinium chloride (PGdn). We explored protease specificity by
using proteinase K (PPK55) and thermolysin (PTL55). Finally, we
examined thermostability for each enzyme at an additional
temperature (PPK37 versus PPK55 and PTL55 versus PTL75).
Assay scores were calculated for >105 unique Gp2 variants in

each of the six reaction conditions. The assay score distributions
per class (Fig. 2D) matched hypothesized developability in all
conditions except PTL75. SDs were small (0.17 to 0.20, except
PTL75: 0.29). Stop variants scored low (0.04 to 0.08, except PTL75:
0.23). GaR scored higher than most Stop variants (67 to 81%,
except PTL75: 35%). One potential hypothesis for PTL75 is the
increased temperature may lead to nonspecific binding of surface-
aggregated proteins. Nevertheless, all reaction conditions, displayed
a significantly higher distribution of assay scores for CC+ versus
CC− (one-way Mann–Whitney U test, P < 0.001), validating each
condition’s utility.
Split GFP. The split GFP assay measures POI concentration with a
C terminus–fused 11th strand of GFP (Fig. 1E). Upon recom-
bination with GFP strands 1 to 10, which was separately induced
following POI production and a 1-h gap, the POI fusion remaining
soluble in the cytosol will produce a fluorescent signal detectable
by FACS (Fig. 1F). The library was sorted into four populations
based on GFP signal and assigned an assay score as a cell-
weighted average: 1 (highest signal), 2/3, 1/3, and 0 (background
signal).
The assay score distributions (Fig. 2D) are consistent with

expectations in SH (GSH) with limited resolution in Iq (GIq).
While both distributions display a low assay score skew, GaR had
a significantly higher score than 76% of Stop in GSH, compared
to 8% in GIq. Additionally, GSH produced a significantly higher
assay score distribution for CC+ compared to CC− (one-way
Mann–Whitney U test. P < 0.001) whereas GIq scores were
only nominally higher (P = 0.15). Thus, GSH is a compelling
candidate for HT developability analysis.
Split β-lactamase. In the split β-lactamase assay, the POI is inserted
in a loop distal to the active site [final construct: β-lac1-194-
(G4S)2-AS-POI-GS-(G4S)2-β-lac197-287, location previously ob-
served to retain 40% activity (43)]. Functional enzyme, hypoth-
esized to be paired with POI solubility and folding robustness
(44), provides ampicillin resistance allowing cell reproduction
(Fig. 1G). The change in growth rates was measured as the
change in POI amplicon abundance in cultures grown to satu-
ration with varying antibiotic concentrations (Fig. 1H). For
comparison to other assays and improved modeling efficiency,
slopes were normalized and scaled (Materials and Methods).
The split β-lactamase assay produced assay scores that were

contradictory toward hypothesized developability yet were able
to differentiate classes, suggesting potential utility despite an
unsolved mechanism. We obtained assay scores for 105 variants
in both Iq (βIq) and SH (βSH). Independent GaR cultures (ca-
pable of growing at all concentrations) and Stop (unable to grow
in nonzero ampicillin concentrations) performed as expected (SI
Appendix, Fig. S3). Yet, in multi-POI culture, GaR had a sig-
nificantly lower assay score than Stop (βIq: 99%, βSH: 70%, one-
way Student’s t test, P < 0.05), and the CC+ population had a
significantly lower assay score distribution than CC− (both
strains, one-way Mann–Whitney U test, P < 0.001). See Fig. 5
and Discussion for further explanation.

Determination of Most Predictive HT Assay Conditions. While the
HT assays broadly differentiated hypothesized class develop-
ability, the ability to transform the assay scores to a traditional
metric is a superior utility assessment. Despite the limited sen-
sitivity in the split GFP assay and the counterintuitive split
β-lactamase distributions with minimal rank correlation to yield
(Fig. 2E), the assays have nonzero mutual information (MI) with
yield. This suggests utility as long as the predictive model is ca-
pable of exploiting the nonlinear relationships captured by MI
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(Fig. 2F). In this section, we determine the optimal HT assay set
(assay type, reaction conditions, and/or bacterial strain) by the
ability to predict recombinant yield with the lowest mean squared
error (MSE) loss.
With a potential complex relationship between developability

and assay scores, we designed our model to maximize the ability
to detect assay utility. Correlation of yields in both strains was
observed (ρ CC+: 0.65, CC−: 0.61; SI Appendix, Fig. S4); thus, a
multitask model (Fig. 3A) was utilized to include both strains’
yield measurements via a one-hot (OH)-encoded vector. We
included relevant comparisons for model inputs: a null strain-
only model (predicts the mean yield per strain) and a OH se-
quence model (encoded and flattened paratope sequence). To
capture possible linear and nonlinear relationships between as-
say scores, sequences, strains, and yield, four model architectures
(ridge, random forest, support vector machine, and a feedfor-
ward neural network) were employed.
Cross-validation (CV) and hyper-parameter optimization were

trained by 195 unique sequences observed in all HT assays and
for which yield was measured in at least one strain. A Yeo–Johnson
(45) power transform and normalization was applied to remove
correlation between error and yield (λ = −0.324, SI Appendix,

Fig. S5). The experimental variance (measurement accuracy) was
calculated as the sequence-averaged trial-to-trial (n = 3) variance
after applying the transformation to trial yields.
Despite potential limitations, all 1,023 assay combinations of

the 10 HT conditions predicted yield with a lower CV loss than
the strain-only control, and 92% of the combinations out-
performed the OH sequence model (Fig. 3B), suggesting all
conditions possess utility. There were seven assay combinations
(using 7 of the 10 assays) that performed optimally and equally
(SI Appendix, Fig. S6, one-way Student’s t test against top model,
P > 0.05). To determine the most generalizable collection, the
yield for an independent set of 44 sequences (not utilized during
CV but observed in top seven HT assays) was predicted, re-
vealing the most informative set: PPK37, GSH, and βSH (Fig. 3C,
one-way Student’s t test against top model, P < 0.05).
The top three HT assays can provide substantial predictive

power for variant developability over sequence or strain infor-
mation alone. The yield for a second set of 97 sequences (not
utilized during CV but observed in top three HT assays) was
predicted (Fig. 3D and SI Appendix, Fig. S6). The assay model
(MSE: 0.565) was able to significantly (one-way Student’s t test,
P < 0.05) outperform the OH sequence model (MSE: 0.667) and

Fig. 3. Determination of predictive HT developability assays. (A) Model visualization utilizing HT assay scores, an OH paratope sequence, and an OH strain
identifier to predict the recombinant yield in both cell types. (B) Power transformation and standardization of yields to remove correlation between yield and
error (SI Appendix, Fig. S5). (C) Model loss distribution for 1,023 HT assay combinations of MSE between predicted and actual yields. (D) The top combinations
from CV (listed top down) were tested for generalizability by the predictive loss against independent set of 44 sequences. (E) Representative scatter plots of
predicted versus measured yield (Iq: purple; SH: orange; Top: power transformed and normalized, Bottom: nontransformed) during final evaluation on set of
97 sequences. The purple-shaded area represents true yield ± square root of sequence-averaged experimental variance.
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strain-only model (MSE: 0.697). A model utilizing both sequence
and assay information (MSE: 0.562) did not have significantly
different (P > 0.05) performance from the assay model alone,
suggesting little aid of sequence knowledge as currently imple-
mented. The model utilizing sequence and assay information,
while predicting better than alternatives, required a nonlinear
random forest architecture with 325 trees for optimal predictive
performance that still trails the experimental variance (0.364),
suggesting room for future improvement. As performed, the
assays reduce the gap between prediction and experimental error
of developability evaluation by 35% compared to sequence
information alone.
A practical application of the HT developability assays is the

ability to isolate sequences with increased developability from
those without. To this effect, we calculated a receiver-operator
curve (ROC) and precision-recall curve via pretrained models to
classify the independent test sequences in the top 50th percentile
of each strain (SI Appendix, Fig. S7). When utilizing the HT assay
scores, the area under the ROC was improved from 0.59 to 0.71
(Strain Iq) and from 0.55 to 0.69 (Strain SH) over the OH se-
quence model. The average precision, a metric more focused on
correctly identifying the positive class, was improved from 0.56 to
0.71 (Strain Iq) and 0.55 to 0.70 (Strain SH), demonstrating the
HT assays are also capable of isolating developable sequences.

Optimal Paratope Sequence Identification. With a predictive model
to translate the assay scores to recombinant expression, we
aimed to understand the sequence-developability relationship.
The predictive model utilizing PPK37, GSH, and βSH assay scores
and OH sequence was used to predict the yield for 45,433 unique
sequences in both strains (Figs. 1K and 4A). After observing the
predicted yield distribution, 6,394 sequences with a predicted Iq

yield > 2.5 mg/L (transformed yield > 0.0) and SH yield >
6.4 mg/L (transformed yield > 0.75) were isolated as Dev+. The

pairwise Hamming distance distribution for the Dev+ sequences
(median 12.3) is shifted to significantly lower values than the
initial distribution (median 13.0, χ2, P < 0.05), suggesting that
developable sequences exist in a partially constrained subset of
sequence space.
To identify beneficial, tolerable, and detrimental mutations to

developability, the log2 difference in amino acid frequency at
each position between Dev+ and all predicted sequences was
calculated (Fig. 4B). Cysteine was the only positively enriched
amino acid at positions 7 and 12 (confirming CC+ stability) but
was also the most enriched at every position. The high cysteine
enrichment was also observed when analyzing predictions of an
assay score model without sequence information (SI Appendix,
Fig. S8). Regarding epistasis, we analyzed the probability of
Dev+ as conditioned by number of cysteines in the sequence,
finding three or four cysteines most optimal (Fig. 4C). There also
appears to be a benefit of seven cysteines; however, the limited
number of sequences (n = 5) limits the confidence in the benefit.
To determine the best cysteine locations to improve develop-
ability, the Dev+ frequency and log2 enrichment were calculated
(Fig. 4D). It should be noted that the 7 and 12 pair had a neg-
ative enrichment, likely due to the artificially increased initial
frequency. As additional cysteines may be disfavored for down-
stream processing flexibility, the enrichment of sequences only
containing cysteines at positions 7 and 12 was calculated (SI
Appendix, Fig. S9). Enabled by the assay throughput, less-
extreme enrichment values observed for cysteine-rich se-
quences (compared to sequences with fewer cysteines) suggests
the cysteines are buffering stability and permitting a wider se-
quence set. The preference of cysteines in Dev+ sequences could
be partially impacted by disulfide-driven protease resistance in
the on-yeast stability assay [e.g., with a free cysteine located near
the active site of proteinase K (46)]. However, both the OH
model and a model utilizing only assays GSH and βSH also

Fig. 4. HT assays enable prediction of Gp2 variants with high developability. (A) Kernel density plot of the predicted yield of 45,433 unique sequences in each
bacterial strain. A total of 6,394 sequences with high predicted yield in both strains were isolated as Dev+ (red). (B) Site-wise enrichment heatmap (Dev+ versus
all predicted sequences) for each amino acid and averaged groups with similar chemical properties: aromatic (F, W, Y), small* (A, G, S), nonpolar aliphatic
(A, G, I, L, M, P, V), polar uncharged* (N, Q, S, T), negative charged (D, E), positive charged (H, K, R), hydrophobic (A, F, G, I, L, M, P, V, W, Y), and hydrophilic*
(D, E, H, K, N, Q, R, S, T). *Note: cysteine was removed to identify any further enrichment of the groups. Loop 1: positions 8 to 11. Loop 2: positions 34 to 39.
(C) The proportion of sequences predicted identified as Dev+ as a function of the number of cysteines in the sequence. Error bars: 1 divided by number of
predicted sequences. (D) The most frequent (percent of Dev+) and enriched (log2 of Dev+ versus all predicted) positions for combinations of cysteines that
result in high-developability proteins. (E) Wild-type paratope positions of Gp2 (Protein Data Bank: 2WMN) colored by the mutational tolerance calculated as
the inverse of the average magnitude of amino acid enrichment.
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indicate a stabilizing effect of additional cysteines (SI Appendix,
Fig. S10 C–F). Moreover, recombinant yield increased at higher
cysteine frequencies of synthesized variants (ρ: Iq = 0.28, SH =
0.48, SI Appendix, Fig. S12 A and B).
Additional analyses enabled by the HT assays were used to

hypothesize properties that drive Gp2 stability. The enrichment
of small residues (alanine, glycine, and serine) at position 34, the
proline depletion in the second loop, and gap enrichment at
positions 36b and 36c (enriching sequences of wild-type length)
suggest that the second loop may be geometrically constrained.
We assessed positional mutational tolerance (ability to mutate
without modifying developability) by calculating the inverse of
the average enrichment score magnitude (Fig. 4E). Positions 7
and 12 were the most constrained (tolerances: 0.5), signifying the
need to be cysteines. While position 37 was the least-constrained
position (8.8), as a whole, loop 2 (5.5) was less tolerant than loop
1 (5.9, excluding 7 and 12). We hypothesize that either 1) the
second loop is a poor paratope in terms of allowing broad di-
versity with favorable developability or 2) the stabilizing disulfide
bond offsets unfavorable mutations within the first loop.

βSH Assay Predictive Performance Explained by MI. Like amino acid
preference, we sought a first-order understanding of optimal
assay scores by looking at the Dev+ distribution compared to all
observed unique sequences (Fig. 5A). Matching the sequence
class distributions (Fig. 2), PPK37 and GSH assay scores of Dev+

sequences were significantly higher, and βSH assay scores were
significantly lower than the initial distribution (Fig. 5A, one-way
Mann–Whitney U test, P < 0.05). However, the rank correlation
between βSH and yield is slightly positive (Iq: 0.00, SH: 0.11),
suggesting the model is exploiting a nonlinear relationship.
We hypothesize that the counterintuitive relationships be-

tween βSH and yield resulted from several competing interactions
relating the change in sequence frequency to the concentration
of functional enzyme POI. We tested this by comparing nonlin-
ear versus linear model performances for several model input
combinations (Fig. 5B). While the PPK37 and GSH assays, alone
and together, performed better with a linear model, four of five
models using the βSH assay performed best with a nonlinear
model.
The correlation-based feature selection (47) (CFS) explains

how the nonzero MI between βSH and yield (Iq: 0.16, SH: 0.13)
resulted in increased predictive power by supplying nonredun-
dant information with respect to other HT assays. The CFS
calculated by MI was significantly higher, and CV loss was sig-
nificantly lower for HT assay combinations containing βSH than
assay combinations without (Fig. 5C, one-way Mann–Whitney U

test, P < 0.05). CFS calculated with MI was highly correlated
with loss when utilizing nonlinear models (ρ = −0.70) remarking
its effectiveness as a feature selection tool. We also found CFS
calculated by rank correlation was correlated to linear model
performance (ρ = −0.56) but less so to overall performance
(ρ = −0.30) as linear models cannot exploit nonlinear relation-
ships (SI Appendix, Fig. S11). As a result, the top CFS combi-
nation via rank correlation (PPK37, PUrea, PPK55, GIq, and GSH;
ridge MSE: 0.564) increased the prediction error relative to ex-
perimental variance by 46% compared to the top model identi-
fied by CFS via MI (PPK37, PTL55, GSH, and βSH; forest MSE:
0.497). While the current selection of HT assays were chosen by
hypothesized utility, based upon the results of CFS, future HT
assays, such as systems for assessing protein foldability (48, 49),
should be considered if it is hypothosized that the assays will
provide nonredundant metrics of developability.

Training Sample Size Evaluation.Next, we asked how the predictive
performance scales versus the number of training sequences. We
first analyzed how many sequences it takes for a model to learn
training set developability, as determined by outperforming the
strain-only model during CV (Fig. 6A). With only 10 sequences
(5% of data), the PPK37, GSH, and βSH model achieves this goal
(one-way paired Student’s t test, P < 0.05). However, models
with sequence information required at least 39 sequences (20%
of data) to achieve the same accomplishment, suggesting the
increased input dimensionality limits the model’s ability to learn.
When evaluating the models for generalizability against a test set
(Fig. 6B), the models using assays required only 59 (PPK37, GSH,
and βSH, 30% of data, P < 0.05) or 78 (Sequence and PPK37, GSH,
and βSH, 40% of data, P < 0.05) training sequences to outper-
form the strain-only model, while the sequence-only model re-
quired all 195 sequences. The generalizability results suggest the
HT assays reduce the training data requirements by 60 to 70%
over sequence information alone.
We also extrapolate how many additional training sequences

would be required to achieve performance within the measure-
ment accuracy (experimental variance). For each model, we ex-
trapolated a best-fit line between the log10 test loss and the log10
number of training sequences weighted by the inverse variance
for each sample size (Fig. 6C). We predict that utilizing the HT
assay scores, the number of unique sequences required to obtain
optimal performance is 80 ± 40% (PPK37, GSH, and βSH) and
81 ± 24% (sequence and PPK37, GSH, and βSH) lower than what
would be required when considering sequence information
alone, which demonstrates the efficiency of the HT assays to
enable developability engineering.

Fig. 5. Nonlinear models can extract nonlinear developability MI from the split β-lactamase assay. (A) Comparison of assay score distributions between
45,433 unique sequences with observed PPK37, GSH, and βSH assay scores (blue) versus 6,394 of the sequences with high predicted developability (Dev+, red). (B)
The predictive performance of model input combinations in both a linear architecture (ridge regression) and nonlinear architectures (reported top perfor-
mance of random forest, support vector machine, and a feed-forward neural network). The error bars in nonlinear models represent SD in MSE from n = 10
stochastically trained models. (C) The CFS as calculated by MI for 1,023 assay combinations versus the CV loss utilizing the best of linear and nonlinear model
architectures. The Spearman’s rank correlation coefficient (ρ) between CFS and loss confirms the ability of the models to extract nonlinear MI.
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Error Analysis. While the trio of assays provide valuable devel-
opability assessment, we sought to identify factors that limit
performance. Due to the sampling strategy (Materials and
Methods), the observation frequency of variants analyzed via dot
blot was higher than the distribution of all variants observed in
the HT assays (SI Appendix, Fig. S12A). However, we observed
nonsignificant correlation (ρ: Iq = 0.02, SH = 0.07, SI Appendix,
Fig. S12B) between the accuracy of our model and the predictive
loss in either strain, suggesting that the predicted yields are not
influenced by observation frequencies.
We next assessed if the number of collected populations per

assay influenced the ability to predict recombinant yield. The
assay scores were recalculated with only two merged populations
from the HT assays at various levels of stringency (SI Appendix,
Fig. S13). We found that, if sequence and assay information is
utilized, there is little benefit of utilizing four populations over
two provided that the most-stringent gate is used. Interestingly,
when only using assay scores to predict yield, there was a de-
crease in predictive accuracy, especially when the highest strin-
gency was not isolated. This suggests that future iterations of
assay development may benefit from increasing resolution
among the most-developable variants.
Finally, we assessed the effect of trial-to-trial assay score

variance for the top-performing HT assays (SI Appendix, Fig.
S14). We found that the ability of the HT assays to predict yield
increased when averaging assay scores over multiple trials. Thus,
while trial-to-trial reproducibility was not limited (ρ: PPK37 = 0.66
to 0.71, GSH = 0.26 to 0.29, and βSH = 0.39 to 0.48), the increased
resolution of multiple trials may improve overall utility.
Combining the analysis of potential sources of error, we be-

lieve future studies will benefit most from increased technical
replicates, with more moderate gains from increased stringency
in isolating populations and minimal benefit from increased
resolution via increased observation frequency. Yet, the rela-
tively small impacts of HT error identified in this section paired
with moderate MI between assays and yield (SI Appendix, Fig.
S11D) suggest a more likely limitation is the difference in
mechanisms driving success in each assay. For example, 1) the
protease assays utilize a eukaryotic cell with more complex cel-
lular machinery than the prokaryotic E. coli; 2) the split GFP
assay measures intracellular protein concentration rather than
the amount of extractable soluble protein during cell lysis; and 3)

the split β-lactamase assay ties transport to the periplasm and
enzymatic activity on top of the producibility measured via dot
blot. Thus, pursuit of additional assays with nonredundant met-
rics of developability and closer mechanisms to the traditional
metric should be sought to augment the significant predictive
power already achieved with the current assays.

Discussion
Traditional protein developability measurements are restricted
in practical throughput, reducing the number of protein variants
that can be reasonably characterized. We evaluated HT assays
that genetically encode the POI in a context where the cell’s phe-
notype is related to the POI’s developability. The on-yeast protease,
split GFP, and split β-lactamase assays exhibited their ability to
proxy protein developability via prediction of recombinant yield
for Gp2 scaffold variants. HT assays increased the scale of pro-
tein developability differentiation by 100-fold (in this study: 400
yield measurements versus predicted yield via 40,000 HT assay
measurements) and potentially enable analysis of developable
sequences beyond those presented in this manuscript. Ligation
efficiency for bacterial transformations and the sequencing depth
per cost are current capacity limitations. However, future studies
utilizing the narrowed set of optimal assay conditions deter-
mined in this work could potentially screen millions of unique
variants with minimal modifications.
The most useful conditions were determined by comparing the

predictive model performance of a traditional developability
metric. Only one of six protease assay conditions were utilized in
the top model, indicating that other conditions (chemical dena-
turants, elevated temperature, and alternative protease) were
not needed to increase the predictive accuracy of recombinant
soluble yield. This may be because the assay modifications were
unable to capture alternative stability metrics or that a single
condition is sufficient to predict developability. Additional con-
ditions may be useful for predicting other traditional develop-
ability metrics, such as thermostability. For example, PTL55 was
found in five of seven top CV models and may aid thermal
predictions. The split GFP and split β-lactamase assays were
most beneficial when utilizing SH assay scores despite predicting
both strain’s yield. We hypothesize SH was able to increase
developability resolution over Iq in our library by promoting

Fig. 6. HT developability assays reduce training size requirement. A total of 10 bootstrapped samples for each sample size (ranging 5 to 100% of available
data) were individually trained by CV and evaluated on 97 independent test sequences. The error bars represent SD across models. (A) The performance
during CV describing the model’s ability to predict developability. (B) The predictive performance against the independent sequence set describing the
model’s ability to generalize beyond the training data. (C) The generalizable performance was extrapolated to estimate the required number of sequences
for the model to perform optimally. Log–log regression was trained with points weighted by the inverse of test loss variance. The error shown represents the
propagated error from the SEs of the parameter estimates.
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stabilizing disulfide bonds and chaperoning the production of
even weakly developable variants.
A nonlinear model was required to convert the split β-lactamase

HT assay scores to a traditional developability metric. The ref-
erence assay evaluated enzymatic activity via minimum inhibitory
concentration (MIC) of ampicillin by clonal colony growth on an
agar plate (37). While the exact differences between our mea-
sured assay score and the traditional MIC remains unclear, one
possible explanation is a decrease in growth rate with increased
protein production (50), lowering the frequency of highly pro-
duced variants. Library plating on agar plates could reduce this
mechanism but may introduce throughput limitations to achieve
sufficient physical spacing to avoid bystander ampicillin reduction.
Despite the discrepancy, we have shown nonlinear models can
extract useful developability information to predict recombinant
yield. One assay limitation is the inability to perform direct se-
lection, which is possible for the on-yeast protease and split GFP,
based upon the linear model performance. A potential solution
to streamline the discovery would be serial direct selections via
on-yeast protease and split GFP, followed by a sequenced
stratification via the split β-lactamase to increase accuracy.
The Gp2 library (∼1020) is well beyond the capacity of tradi-

tional developability assays that often fail to produce predictive
sequence-based models. Utilizing the HT assays, we predicted
yields 35% closer to experimental accuracy than a OH-encoded
sequence-based model trained on the same sequence set, proving
their utility over naïve computational approaches in the vast
protein domain. We studied the site-wise amino acid biases
based upon predicted yield of 40,000 unique paratopes, which
can be used to design more effective libraries (25, 51–54).
However, the analysis utility is limited by multisite interactions
(observed with cysteine) and model accuracy. We believe the
increased knowledge will enable more advanced sequence-based
models capable of extrapolating developability to unobserved
variants. The efficiency and accuracy of measuring developability
proxies via HT assays empowers such models.
We estimate the HT assays will reduce the number of se-

quences required to produce an optimal predictive model by
80% compared to sequence information alone. Advances in ex-
perimental protocol (beyond those evaluated in this study) and
alternative model architectures may provide other routes for
increased utility. The assays presented in this work have shown
the ability to evaluate the developability for a substantially higher
number of unique sequences compared to traditional methods.
These assays are essentially independent of protein primary
function (assuming naïve Gp2 variants tested have no known
primary function). Future work will validate the utility of inte-
grating developability assays with discovery and evolution of
primary function. Continued improvements of HT assay devel-
opment may revolutionize the candidate selection process by
presorting proteins for ideal developability before the primary
function is evaluated, removing a discovery and engineering
bottleneck.

Materials and Methods
The following section contains a summary of relevant information to perform
the HT assays and predictive analyses. Additional methods can be found in
SI Appendix.

Subsampling Gp2 Library.We chose to subsample the transformed population
to increase assay resolution by sampling multiple cells per sequence and
performing assays in triplicate. We projected 10 reads per sequence for on-
yeast protease and split GFP and 10 reads per sequence per antibiotic con-
centration for the split β-lactamase assay, summing to 160 reads per se-
quence per trial across all 10 assays. We found the limiting factors to be the
capacity of HT sequencing and bacterial ligation efficiency. Given that an
Illumina NovaSeq SP flowcell can achieve 400 × 106 reads per lane for about
$3,000, we decided on utilizing two lanes to analyze the 106 sequences to
balance information and experimental cost. The realized difference in

obtained sequence information is likely due to stochastic sampling leading
to a bias in sequence frequencies.

On-Yeast Protease Assay. Dilutions of proteases and yeast were separately
prepared on ice. Proteinase K (P8107S, New England Biolabs) was diluted to
twice the reaction concentration in phosphate-buffered saline with 0.1%
albumin (PBSA) (PUrea was diluted using 3 M urea in PBSA and PGdn was di-
luted using 1 M guanidium chloride in PBSA). Thermolysin (V4001, Promega)
was reconstituted to 1 mg/mL in 50 mM Tris at pH = 8 with 0.5 mM calcium
chloride and diluted with PBSA on the day of experiment. Exposure time
with protease at reaction temperature was held constant while the con-
centrations of protease were modified to obtain a roughly equal distribu-
tion of FACS gates’ occupancy (SI Appendix, Fig. S1).

A total of 10 million yeast cells expressing the subsampled library were
centrifuged at 5,000 g for 1 min, aspirated, resuspended in 1 mL cold PBSA,
centrifuged, resuspended in 50 μL PBSA, and transferred to a 0.2-mL PCR
tube on ice. A total of 50 μL diluted enzyme was added to the cells and
mixed via pipetting on ice. The enzyme–yeast mixture was placed in a pre-
chilled 4 °C PCR block where a preset program heated the mixture to the
reaction temperature for 10 min and returned the mixture to 4 °C. Both
heating and cooling rates were set to the maximum ramp speed on the
Eppendorf Mastercycler Nexus GX2. The enzyme–yeast mixture was then
added to 1 mL cold PBSA, and the epitopes were labeled following the
protocol used during library subsampling.

The cells were separated via FACS into four populations based upon the
cMyc to HA ratio. The undigested gate (highest cMyc:HA ratio) was deter-
mined by the location of the library in a no-enzyme control. The fully
digested gate (lowest cMyc:HA ratio) was determined by the location of the
no-enzyme control where the primary mouse-anti-cMyc antibody was
omitted. The other two gates were drawn to divide the remaining space in
half. Collected cells were centrifuged and stored at −80 °C without allowing
propagation.

Split GFP Assay. Frozen aliquots of cells were thawed and grown in 5 mL
lysogeny broth (LB) + Amp + Kan overnight. Part of the overnight culture
was added to 5 mL fresh LB + Amp + Kan at an optical density at 600 nm
(OD600) of 0.1 and grown for 90 min. Gp2-GFP11 production was induced by
the addition of 0.5 mM isopropyl β-d-1-thiogalactopyranoside (IPTG). For the
remainder of split-GFP protocol, both Iq and SH strains were grown at 37 °C.
Production continued for 2 h, followed by a centrifugation (3,000 g for
3 min). Cells were then resuspended in 5 mL fresh LB + Amp + Kan and in-
cubated for 1 h to end Gp2-GFP11 expression. GFP1-10 expression was then
induced by adding 2 mg/mL arabinose, and production continued for 2 h.
Finally, the culture was centrifuged, resuspended in 1 mL cold PBSA, and
stored on wet ice.

FACS was used to separate bacterial cells based upon the GFP signal.
Background fluorescence was determined by cells containing the stop-GFP11
plasmid. The remainder of cells were divided into three equally (log scale)
spaced gates. The collected populations were centrifuged (3,000 g for
10 min) and frozen at −80 °C to inhibit growth. The cells were then thawed
and miniprepped to obtain the Gp2-encoding plasmids.

Split β-Lactamase Assay. Frozen aliquots of cells were thawed and grown in
5 mL LB + Kan overnight. Part of the overnight culture was added to 5 mL
fresh LB + Kan at an OD600 of 0.01 and grown for 90 min. The split
β-lactamase production was induced by the addition of 0.5 mM IPTG. Pro-
duction was continued for 2 h at 37 °C (strain Iq) or 4 h at 30 °C (strain SH).
The culture was then divided into 6 × 300 μL wells per concentration of
ampicillin in a 96-well plate. A total of 30 μL per well of diluted ampicillin
was spiked in to achieve the desired final concentrations. The cultures were
then monitored in a Synergy H1 microplate reader (BioTek) with continuous
double-orbital shaking and the 600-nm absorbance obtained every 5 min.
All wells for a given concentration of ampicillin when the average unnor-
malized absorbance reached 0.35 were removed from the plate, centrifuged
(12,000 g for 3 min), and frozen at −80 °C to stop growth. The cells were
then thawed and miniprepped to obtain the Gp2-encoding plasmids.

HT Assay Score Calculations.
On-yeast protease and split GFP assay score calculation. The four collection gates
in the FACS-based assays were drawn to bin cells via hypothesized devel-
opability. Thus, we defined an assay score which correlates to the relative
position of a sequence. To increase resolution, we collected an average of
6.7× (on-yeast protease) and 7.9× (split-GFP) the hypothesized diversity of
cells per trial and assigned a score correlating to the average cell location.
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For each population, the read frequency of every sequence was converted
to the number of cells collected via FACS (Eq. 1).

cells of sequence i in gate j =
reads of sequence i

total filtered reads in gate j *
number of cells collected in gate j.

[1]

The assay score for a sequence was calculated by assigning each gate a score
[0, 1/3, 2/3, 1] and determining the cell-averaged score (Eq. 2). For on-yeast
protease, 1 was given to full-length sequences, and 0 was given to fully
digested sequences. For split GFP, 0 was given to no detected GFP signal, and
1 was given to the highest amount of GFP signal.

score of sequence i =
∑

j gates
cells of sequence i in gate j* score of gate j

∑
j gates

cells of sequence i in gate j
[2]

The final assay score was determined by the average score for a sequence in
each trial. Sequences without reads in at least one gate per trial were re-
moved from the dataset.
Split β-lactamase assay score calculation.We aimed to assign an assay score that
would correlate to the total activity of β-lactamase enzyme in each cell. We
assumed that cells with active enzyme grown in ampicillin will retain the
ability to grow and divide (and thus increase DNA frequency), whereas cells
with inactive enzyme grown in ampicillin will stop growth (and thus prevent
any increase in DNA frequency). To increase resolution, we chose ampicillin
concentrations that produced ∼10, 30, and 60% of uninhibited growth for
each cell strain. Briefly, we estimated the max growth rate and determined
the extra number of doublings required to reach a given concentration.
Assuming all cells are growing with no ampicillin, the relative number of
dividing cells can be determined by the initial number of cells. The assay
score for each sequence was determined by the relative change in read
frequency with increasing ampicillin concentrations. For simplicity, the am-
picillin concentrations were assigned to [0, 1, 2, or 3] where 0 represented
the no-ampicillin control and 3 represented the highest ampicillin
concentration.

The final assay score was determined by the average score for a sequence
in each trial. Sequences without a read in the no-ampicillin population in
each trial were removed from the dataset. To scale the assay scores within
the range [0,1], scores for CC+ and CC− sequences (not including the inde-
pendent test sequences to prevent data leaking) were normalized via scikit-
learn’s quantile transformer with a normal output distribution followed by a
minmax scaler.

Dot Blots to Quantify Expression.
Production of Gp2 library for dot blot. Frozen cells from deep well 96-well plates
were scraped and seeded into 500 μL/well fresh LB + Kan and grown over-
night (Iq was grown at 37 °C and SH was grown at 30 °C for the entire
production). The following day, 25 μL/well overnight culture was added to
1 mL/well fresh LB + Kan and grown for 90 min. The protein production
was induced by the addition of 0.5 mM IPTG (diluted in LB + Kan to add
100 μL/well). Production was continued for 2 (Iq) or 4 h (SH) followed by
centrifugation (3,000 g for 5 min) and freezing of the cell pellet at −80 °C
overnight. The pellet was thawed by the addition of 100 μL/well lysis buffer
(only change is 0.1 mg/mL lysozyme) and shaken at 37 °C for 1 h. The plates
were centrifuged (3,000 g for 5 min), and 25 μL/well soluble fraction was
added to 25 μL/well denaturing buffer. Protein lysates from SH were diluted
an additional 5× in denaturing buffer to ensure signals were within the
range of standards. The plates were incubated at 70 °C for 5 min to ensure
denaturation and full accessibility of the His6 tag.
Dot blot protocol. A section of 0.2-μm pore polyvinylidene fluoride (1620177,
BioRad) was cut to size and placed in a box (15.2 × 10.2 × 3.2 cm, Z742094,

Sigma Aldrich). The membrane was soaked in 50 mL methanol for 30 s,
followed by 50 mL dH2O for 2 min. Finally, the membrane was equilibrated
in 50 mL TBST (0.05% vol/vol Tween 20 in Tris-buffered saline) for 5 min. The
membrane was then placed on a TBST-soaked filter paper and padded dry
with a Kimwipe. Using a multichannel pipet, 2 μL/well protein samples were
added to the membrane and allowed to fully absorb. The membrane was
then transferred to a dry filter paper and placed in a fume hood for 30 min
until dry. The membrane was then placed back in the box with 50 mL
blocking solution (5% (wt/vol) nonfat dry milk in TBST) and rocked overnight
at 4 °C. The membrane was then labeled with 50 mL 0.2 μg/mL anti His6–
horseradish peroxidase (ab1187, Abcam) in blocking solution for 30 min at
room temperature. Excess antibody was washed via three washes of 50 mL
TBST for 10 min at room temperature. The membrane was then soaked in
25 mL SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo-
Fisher) for 5 min. Then membrane was then placed inside a transparency and
exposed 10 to 30 s on a ChemiDoc MP Imaging System (BioRad).

Identification of HT Assay Predictiveness.
Code availability. Python scripts used for deep sequencing and model evalu-
ation, as well as datasets to train, evaluate, and plot predictive performance
are available at https://github.com/HackelLab-UMN/DevRep.
CV performance. A set of 195 unique Gp2 variants contained measured HT
assay scores in all 10 assay conditions and a yield in at least one of the strains.
We performed 10 × 10 repeated K-fold CV to determine which of the 1,023
combinations of HT assay conditions predicted the “left-out” set of se-
quences’ yield with the least error. Each HT assay combination was evaluated
for predictive performance on four different model architectures summa-
rized in Table 1. We utilized the Hyperopt (55) library to determine the
optimal hyperparameters for each architecture. We allowed 50 trials (or a
maximum of 24 h of computational time for a feedforward neural network
[FNN]) and recorded the trial with the lowest predictive error.
Test performance. When evaluating performance on the independent test
sequences, the best model architecture and hyperparameters were chosen by
CV, but the weights for the model were refit utilizing the entire CV training
set. The independent test set was not used in training data transformations
or models.
CFS. CFS identifies the optimal feature set by maximizing the relationship
between features (x, HT assays) and target (y, yield) while minimizing the
interfeature relationships (47). We calculated the CFS for every set (Sx) of
1,023 HT assay combinations. We defined the relationship (r) as the absolute
value of Spearman’s rank correlation coefficient (ρ) or the MI to capture
linear and nonlinear relationships (Eq. 3).

CFS (Sx) =
∑k

x=1(ryIq ,fx + rySH ,fx)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k + 2 ∑k−1

x=1(∑k
z=x+1(rfx ,fz))√ . [3]

Subsampling training data. When evaluating the predictive performance of
assays with varying number of training datapoints, we bootstrapped the
dataset for CV 10 times. Each random dataset had separately optimized
architectures and hyperparameters determined by CV. Due to the compu-
tational constraints, FNN architecture was not evaluated when subsampling
the training dataset.
Propagation of uncertainty. Calculations involving propagation of uncertainty
for predicted sample size were performed using the uncertainties (56)
Python package.

Data Availability. Sequences, models, and analytics data have been deposited
in GitHub (https://github.com/HackelLab-UMN/DevRep).

Table 1. Description of model architectures utilized when evaluating HT assay predictive performance

Architecture Description Hyperparameter space

Ridge sklearn.linear_model.Ridge 10α: uniform[−5, 5]
Forest sklearn.ensemble.RandomForestRegressor n_estimators: quniform[1, 500], max_depth: quniform[1, 100],

max_features: uniform[0, 1]
SVM sklearn.svm.SVR 10γ: uniform[−3, 3], 10C: uniform[−3, 3]
FNN tf.keras.layers.Dense 10^epochs: uniform[0,2], batch size: quniform[10, 200], hidden layers:

quniform[0, 4], nodes/hidden layer: quniform[1, 100]

“Uniform” and “quniform” refer to stochastic search spaces defined in the Python hyperopt library (57).
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