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Turning intractable counting into sampling: Computing the configurational entropy
of three-dimensional jammed packings
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We present a numerical calculation of the total number of disordered jammed configurations � of N

repulsive, three-dimensional spheres in a fixed volume V . To make these calculations tractable, we increase
the computational efficiency of the approach of Xu et al. [Phys. Rev. Lett. 106, 245502 (2011)] and Asenjo et al.
[Phys. Rev. Lett. 112, 098002 (2014)] and we extend the method to allow computation of the configurational
entropy as a function of pressure. The approach that we use computes the configurational entropy by sampling
the absolute volume of basins of attraction of the stable packings in the potential energy landscape. We find a
surprisingly strong correlation between the pressure of a configuration and the volume of its basin of attraction in
the potential energy landscape. This relation is well described by a power law. Our methodology to compute the
number of minima in the potential energy landscape should be applicable to a wide range of other enumeration
problems in statistical physics, string theory, cosmology, and machine learning that aim to find the distribution
of the extrema of a scalar cost function that depends on many degrees of freedom.
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I. INTRODUCTION

Many questions in physics are easy to pose but difficult
to answer. One such question is as follows: How many
microscopic states of a given system are compatible with its
macroscopic properties? In statistical mechanics, knowledge
of this number allows us to compute the entropy and thereby
predict the macroscopic properties of a system from knowl-
edge of the interaction between atoms or molecules.

In granular matter we can similarly ask how many mi-
crostates are compatible with a given set of macroscopic
properties. However, the computation of the correspond-
ing absolute entropy has thus far proven to be extremely
challenging. Without such knowledge, it is not possible to
explore the analogies and differences between granular and
Boltzmann entropy. Being able to compute the configurational
entropy is therefore clearly important, the more so as granular
materials are ubiquitous in everyday life (sand, soil, powders).
Many industrial processes involve granular materials. In the
natural world, the Earth’s surface contains vast granular
assemblies such as dunes, which interact with wind, water, and
vegetation [1]. Packings of particles that are soft or biological
in nature, such as cells, hydrogels, and foams, are also known
to undergo jamming [2] and their behavior to be “granular”
viz. not subject to thermal motion. Moreover, as glasses and
granular materials share many properties it has been proposed
that their physics may be controlled by the same underlying
principles [3].

The study of granular materials is complicated by the
fact that these materials are intrinsically out of equilibrium.
In fact, thermal motion plays no role in granular matter. It
maintains its configuration unless driven by external forces.
As a consequence, the properties of granular materials depend
on their preparation protocol.
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Granular materials are athermal and therefore cannot be
described by statistical mechanics. However, these materials
can exists in a very large number of distinct states and
this fact inspired Edwards and Oakeshott [4] well over two
decades ago to propose a statistical-mechanics-like formalism
to describe the properties of granular matter. In its original
version, the Edwards theory assumed that all mechanically
stable configurations (“jammed” states) are equally probable
and that the logarithm of the number of these states plays a
role similar to that of entropy. In this theoretical framework, the
volume of the system and its compactivity (i.e., the derivative
of volume with respect to the configurational entropy) are the
analogs of the energy and temperature in thermal systems.

In the absence of explicit calculations (or measurements)
of the absolute configurational entropy, a direct test of
the Edwards hypothesis has proven difficult, and different
authors have arrived at different conclusions based on indirect
tests in either simulations [5–8] or experiments [9,10]. In
addition, alternative definitions of entropy have been proposed
to characterize the complexity of granular systems while
circumventing explicit enumeration of states [11,12].

Numerous tests of the Edwards volume ensemble have
focused on the determination of the compactivity [13–21].
However, the role of compactivity as a temperature-like
quantity is problematic as Puckett and Daniels [22,23] have
shown that it does not satisfy the equivalent of the zeroth law of
thermodynamics—the law that is the basis of all thermometry.

Edwards’ theory has been generalized to include the
distribution of stresses within the system through the force-
moment tensor [24–27] and another analog of temperature
emerged, known as angoricity, which is a measure of the
change in entropy with stress. The experiments by Puckett
and Daniels [22] showed that angoricity, unlike compactivity,
is a temperature-like quantity as it satisfies the zeroth law.

To date only a few examples of numerical tests of the
generalized Edwards ensemble are available [22,26,28,29].
Numerical tests of the stress ensemble focus on systems of
soft spheres near jamming where the compactivity X → ∞
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and fluctuations in volume are negligible compared to stress
fluctuations [26,27]. Wang et al. [28,29] proposed a unified
test that compared ensemble averaged results over volume
and stress with predictions for the jamming transition, finding
agreement; we note, however, that in the latter approach the
results rely significantly on the equiprobability assumption.

When the system is composed of very stiff grains, or is
close to jamming, any small deformation will lead to a large
change in the contact forces. In these limits the geometric and
the force degrees of freedom can be decoupled, giving rise to
the force network ensemble [30] (FNE). In this framework,
force networks are constructed on a given geometry and each
force state is assumed to be equiprobable. The FNE has been
utilized as a testing ground for statistical frameworks [31–33].

More than two decades after its introduction many funda-
mental questions concerning the Edwards hypothesis remain
unanswered. This unsatisfactory state of affairs is at least partly
due to the fact that no efficient methods existed to measure or
compute the absolute configurational entropy directly. Until
recently, the only way to determine the configurational entropy
was by direct enumeration of the distinct jammed states of a
system. This method is inefficient and cannot be used for
systems that contain more than 10–20 particles. Over the past
few years, the situation on the numerical front has changed:
Recent numerical work by Asenjo et al. [34,35], based on
an approach introduced by Xu et al. [36], has demonstrated
that it is possible to compute the number of distinct jammed
states of a system, even when this number is far too large
(e.g., 10250) to allow direct enumeration. The approach of
Refs. [34–36] replaces an intractable enumeration problem by
a tractable scheme to sample the (absolute) volume of the
basins of attraction of stable states in the potential energy
landscape.

The approach described herein is completely general and
it extends to any energy landscape problem that aims to find
the extrema of a scalar cost function that depends on many
degrees of freedom. Enumerating the number of solutions or
stationary points, and their distribution, for certain classes
of random functions is a classical problem in mathematics
and statistics [37–50]. In statistical physics, ad hoc numerical
and theoretical methods have been developed in the realms
of random Gaussian and polynomial fields [51–59]. In this
sense, particular attention has been devoted to the mean-field
p-spin spherical model of a spin glass with quenched disorder
[60–64]. A related area is the computation of the configura-
tional contribution to the entropy of structural glasses [65,66].
The physical significance of this method goes even further
to encompass string theory [67–69], cosmology [70–74], and
machine learning [75–78].

We note that the geometrical structure of the basins of
attraction of jammed states had been studied by O’Hern and
coworkers [8,79,80]. O’Hern also reported direct enumeration
estimates of the number of jammed states of small systems.
A rather different technique (“basin sampling”) to count the
number of energy minima in the potential energy landscape
of small clusters had been reported by Wales and cowork-
ers [81,82].

We note that, for the system (and protocol) considered by
Asenjo et al., not all packings are equally probable. However,
as shown in Ref. [34], the equal-probability hypothesis is not

needed to arrive at a meaningful definition of an extensive
granular entropy. When, in the remainder of the present paper,
we mention the configurational (granular) entropy, we refer to
the definition of Ref. [34].

We stress that even though the approach of Refs. [34–36]
allows us to solve enumeration problems which were far
from possible using direct enumeration, it is still computa-
tionally expensive. Thus far, it had only been applied to two-
dimensional packings. Substantial “technical” improvements
were needed to make the method fast enough to deal with
three-dimensional systems.

In the present paper, we present the first enumeration of the
number of jammed packings for three-dimensional systems
consisting of up to 128 soft spheres. A direct comparison of
the entropy measured as a function of system size for two- and
three-dimensional jammed sphere packings is shown in Fig. 1.
The potential of the method presented herein can be verified
unequivocally from Fig. 1: We are able of tackling problems
at least 500 million times more complex, and of greater
computational cost, than the already spectacularly difficult
questions confronted by Asenjo et al. [34]. Furthermore,
we show how our improved procedure allows first-principles
computation of configurational entropy as a function of system
size and pressure. The method and the technical improvements
needed to overcome this numerical challenge are presented
alongside the main results.

The remainder of this work is organized as follows.
Section II describes the basic principle of the mean basin
volume method for counting and explains how that strategy can
be applied to enumerate granular packings. The enumeration
and entropy results for three-dimensional jammed sphere
packings as a function of system size and pressure are reported
in Sec. III. The rest of the manuscript is dedicated to the
description of the improved numerical method. Section IV
outlines our protocol for sampling different granular packings,
and it describes the corresponding potential energy landscape
and minimization techniques. Application of thermodynamic
integration to compute the volume of a basin of attraction
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FIG. 1. Entropy as a function of system size N for two- (Ref. [34])
and three-dimensional (this work) jammed sphere packings. Dashed
curves are lines of best fit of the form S = aN .
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in such a landscape is described in Sec. V. Aspects of the
data analysis tools used on the histograms of sampled basin
volumes, and related configurational entropy definitions, are
described in Sec. VI. Conclusions are drawn in Sec. VII.
Further technical background is given in the appendices.

II. BASIC PRINCIPLE: COUNTING BY SAMPLING

In this section, we briefly review the numerical approach
that we use to compute the number of distinct jammed
states. We stress that the approach that we use has much
wider applicability than the counting of granular packings
[51–68,70–78,83]. In the context of granular packings, our
aim is to compute the number of ways � in which N spheres
can be arranged in a given volume Vbox of Euclidean dimension
d. Knowledge of � allows us to compute configurational
entropies and related quantities from first principles [4,34]. Our
approach is based on a rigorous mapping of the enumeration
problem onto counting the number of minima of a potential
energy landscape [36]. The approach makes no use of a
harmonic [84] or quasiharmonic [85] approximation. For a
system of hard particles the potential energy function is
discontinuous, that is, the energy of the system is either
zero, if no two particles overlap, or infinity otherwise. Then,
at jamming, in the absence of rattlers, basins of attraction
are single points in configuration space and they have no
associated volume. This does not mean that we cannot sample
the energy minima of a system of hard particles. The reason
is that all jammed structures of hard particles correspond
to the zero potential energy minima of a system with a
continuous repulsive potential with the same range as the
hard-core diameter of the hard particles. In what follows,
we focus on this class of systems, but we generalize the
problem by also considering minima with a nonzero potential
energy. In particular, we consider spherical particles with a
hard core and a short-ranged continuous repulsive interaction.
Under conditions where this system is jammed, a system
with only the hard-core interactions would still be fluid and
would sample the accessible configuration space uniformly.
This remaining accessible volume is partitioned in basins of
attraction defined by the soft shells. The HS-WCA potential
used to simulate hard-core plus soft-shell interactions and the
packing preparation protocol are described in Sec. IV B. For an
illustration of the packing preparation protocol refer to Fig. 2.
As we argue below, using an HS-WCA model greatly improves
the efficiency of determination of basin volumes.

Let us denote the total available volume in dN-dimensional
space as V . Note that V is not the total volume of configuration
space (V N ), but just that part of the volume that is free
of hard-core overlaps. It is the configurational part of the
partition function of the hard-core system at the number
density under consideration. Since the accessible configuration
space is tiled by the basins of attraction of the distinct energy
minima [84,86–88] we can write:

V =
�∑

i=1

vi, (1)

where vi is the volume of the i-th basin of attraction and � is
the total number of distinct minima. We thus make the simple

FIG. 2. Hard sphere fluid at φHS = 0.5, left, and HS-WCA
jammed packing at φSS = 0.7, right, for a system of 44 polydisperse
hard spheres with mean radius 〈rh〉 = 1 and standard deviation
σHS = 0.05. We prepare the polydisperse HS fluid configurations
at fixed packing fraction φHS = 0.5 by a Monte Carlo simulation.
Particles are then inflated by the same factor, proportional to their
radius (spheres are coloured according to their radius), to obtain an
overcompressed soft spheres jammed packing at φSS = 0.7 by an
infinitely fast quench (energy minimization).

observation:
�∑

i=1

vi = �

�

�∑
i=1

vi = �〈v〉, (2)

where 〈v〉 is the mean basin volume, from which it follows
immediately that

� = V
〈v〉 . (3)

We note that, for sphere packings, V is known from the
equation of state of the underlying hard sphere fluid (see
Appendix E) and we can measure 〈v〉 by thermodynamic
integration, as discussed in detail in the Sec. IV. The approach
of Refs. [34,36] has thus turned the intractable enumeration
problem of finding � into a sampling one, namely measuring
〈v〉.

III. RESULTS: COUNTING DISORDERED
3D SPHERE PACKINGS

The mean basin volume method for enumerating the
number of mechanically stable packings was introduced by
Xu et al. [36] and tested on a small system of soft disks.
Asenjo et al. [34] then made a number of modifications
to the algorithm that allowed them to apply it to larger
systems of up to 128 disks. As was the case with Ref. [36],
the calculations of Ref. [34] focused on two-dimensional
systems because of the high computational costs involved in
studying 3D systems. Here we present results for systems of
three-dimensional soft spheres. We are thus in a position to
compute the configurational entropy of a real (but idealized)
three-dimensional system.

We first describe an analysis similar to the one reported by
Asenjo et al. [34] to verify the extensivity of the entropy S(V )
at constant packing fraction. Next, we extend our approach
to the generalized Edwards ensemble, i.e., one based on a
description of the system in terms of its volume and pressure,
to compute the generalized entropy S(V,P).
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We investigate three-dimensional packings with system
sizes ranging from 24 to 128 HS-WCA particles, see Eq. (15),
at φHS = 0.5 hard-sphere fluid packing fraction and φSS = 0.7
soft sphere packing fraction, corresponding to a ratio of the
soft- and hard-sphere radii ratio rSS/rHS = 1.12, prepared
following the protocol outlined in Sec. IV. For each system
size we compute the volume of the basin of attraction of
approximately 1000 packings. Each PT run (see Sec. V) was
performed on 15 parallel threads of a single eight-core dual
Xeon E5-2670 (2.6-GHz, Westmere) node. Our choice of
convergence criterion was such that when the uncorrelated
statistical error for each of the replicas’ mean-square displace-
ment fell below 5% the calculations were terminated. This
setup translated in run times ranging from 10 to 300 h per
basin depending on system size, which amounts to O(106) h
of total run time and O(107) total CPU h. We then analyze
the corresponding distribution of dimensionless free energies
following the protocol described in Secs. V and VI and
summarized in Appendix A.

A. Extensivity of the entropy

We first computed two alternative definitions of entropy: the
Gibbs entropy SG = −∑�

i=1 pi ln(pi) − ln(N !) and Edwards
(Boltzmann) entropy SB = ln(�) − ln(N !), where pi is the
probability to sample packing i and � is the total number of
mechanically stable states (or minima in the energy landscape).
A detailed discussion of these definitions is outlined in Sec. VI.
The results of these calculations are summarized in Fig. 3.
Our results strongly suggest that, also in three dimensions,
the entropy thus defined is extensive. Note that extensivity
requires not only that the entropy scales linearly with system
size but also that it crosses zero at the origin. The slightly
higher value of the Edwards entropy compared to the Gibbs
entropy is consistent with the observation that Edwards’
equiprobability corresponds to the maximum possible entropy
of a system with � states. We also show that our estimates
for the Edwards’s entropy are relatively insensitive to the
precise strategy used to compute it. In Fig. 3, we compare three
methods: a parametric fit to a generalized Gaussian cumulative
distribution function (c.d.f.) using a nonlinear least-squares
method, a fit to the corresponding probability density function
(p.d.f.) using maximum likelihood, and a nonparametric fit by
kernel density estimation, which makes no a priori assumption
about the shape of the distribution, other than the choice of the
kernel function. We note, once again, that no postprocessing
is needed to compute the Gibbs version of the configurational
entropy. Our results are in line with those reported by Asenjo
et al. [34] for two-dimensional systems.

The number of mechanically stable states � required by
the Edwards’ definition of entropy is obtained subsequently
to fitting the numerically obtained distribution of log-basin
volumes (dimensionless free energies) to a generalized Gaus-
sian distribution and unbiasing it appropriately, as described
in Sec. VI. We observe that the best-fit mean and scale
parameters of the generalized Gaussian for the distribution of
dimensionless free energies, μ and σ in Eq. (27), respectively,
are also extensive, which, although in line with what was found
in two dimensions, is not a priori obvious. Finally, we find
that the shape parameter, ζ in Eq. (27), appears to depend
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FIG. 3. Top left: Entropy as a function of the system size N

computed, in order, according to the Gibbs configurational entropy
and the Edwards configurational entropy using a nonparametric fit
by kernel density estimation (KDE), a parametric fit to a generalized
Gaussian c.d.f. using a nonlinear least-squares method, and a fit to the
corresponding p.d.f. using maximum likelihood (ML). Comparison
of generalized Gaussian best-fit parameters for 2D (see Ref. [34]) and
3D sphere packings: scale parameter σ (bottom left) and mean log-
volume μ (top right) scale linearly with system size N ; distributions
are more peaked for 2D packings. In 2D we observe much stronger
dependence of the shape parameter ζ (bottom right) as a function of
system size than in 3D.

only weakly on system size. The statistics are poor, but the
data are compatible with the assumption that ζ → 2 (Gaussian
distribution) as N → ∞. In 2D, the same limiting distribution
of ζ , but with a much stronger size dependence, was observed.

B. Entropy in the generalized Edwards ensemble

We next consider the situation where the configurational
entropy is a function of both the volume V and the stress
tensor �̂ of the system. The number of packings with fixed V

and �̂ is denoted by �(�̂,V ).
In the generalized Edwards ensemble [23,26,27], we fix

the variables conjugate to V and �̂, viz., the compactivity X

and the inverse angoricity tensor α̂. The generalized partition
function can then be written as [23]:

Zdyn =
∑

ν

ω(�̂ν,Vν)e−Vν/Xe−Tr(α̂�̂ν ), (4)

where Vν and �̂ν are the volume and the force-moment (stress)
tensor for state ν. The weights ω account for the protocol
dependence of the probability to generate a state, and the sum
runs over all mechanically stable states ν.

We can rewrite this partition function in terms of the density
of states:

Zdyn =
∏
l,k>l

∫∫
d�̂lkdV �dyn(�̂,V )e−V/Xe−Tr(α̂�̂). (5)
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For a system under hydrostatic pressure, and in the absence of
shear, we can write the force-moment tensor as �̂ = Î
, where

 = PV = Tr(�̂)/3 is the internal Virial of the system. The
inverse angoricity tensor α̂ becomes a scalar α = ∂S/∂
 [27].
This result allows us to simplify the notation significantly and
at fixed volume, through the mean basin volume method, we
obtain the number of states integrated over all pressure states,
�(V ) = ∫

dP�(V,P). We now discuss how to generalize
this procedure so one can compute �(V,P), and therefore
the configurational entropy, in the context of the generalized
Edwards ensemble.

1. Pressure to basin volume power-law relation

To compute Z(X,α) directly, we would have to evaluate
�(P,V ) as a function of both P and V . While, with the tools
that we have this calculation is, in principle, possible, the
computational costs would be several orders of magnitude
larger than the already quite substantial costs of computing
�(V ). This would suggest that the computation of Z(X,α) is
not possible at present.

However, it turns out that we can still estimate the
generalized configurational entropy because, as we discuss
below, we observe a surprisingly strong correlation between
pressure and basin volume.

From Fig. 4 we see that the basin volume for a given
pressure state at fixed volume is strongly correlated with the
pressureP . As the figure suggests, the relation between − ln(v)
and ln(P) is approximately linear, and hence

F (P|N,φSS) ≡ − ln(v) = N

κ
ln(P) + C(N ), (6)
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FIG. 4. Top: Dimensionless free energy versus pressure of me-
chanically stable states at fixed volume for several system sizes.
Best-fit lines are in black. In the bottom left and right plots we show
slope and intercept for each of the best fit lines as a function of system
size. Both slope and intercept scale linearly with system size.

where κ denotes the slope of the linear fit and C(N ) its value
at P = 1 (see Fig. 4). The value of κ is not known a priori.
It seems likely that κ depends on the functional form of the
potential. C(N ) is an even less universal linear function of N ,
as it depends on the choice of units.

We anticipate that this power-law relationship survives for
packings in two dimensions for a wide spectrum of packing
fractions φ > φJ , viz., as long as the system is jammed and
sufficiently overcompressed [89].

2. Gibbs configurational entropy

Using our approximate relation between pressure and basin
volume, we can now rewrite Eq. (6) in terms of the probabilities
for each jammed state,

ln(pi) = −N

κ
ln(Pi) − C(N ) − ln(V), (7)

which, when substituted in the definition for the Gibbs entropy
Eq. (22), gives the configurational entropy at a given volume
in terms of the biased mean log-pressure,

SG = N

κ
〈ln(P)〉B + C(N ) + ln(V) − ln(N !). (8)

The significance of this equation should be apparent: For a
sufficiently overcompressed packings of soft spheres at a given
packing fraction, the Gibbs configurational entropy can be
approximately computed from sole knowledge of the average
pressure, provided that κ is known.

3. Generalized Edwards configurational entropy

To recover the number of states as a function of volume and
stress we note that

�(V,P) = �(V )
∫ P+δP

P
U(x|V )dx, (9)

whereU(P|V ) is the unbiased probability distribution function
of stresses at some specified volume. The directly measured
distribution of pressures depends on the protocol with which
packings are generated.

We distinguish between the biased, B(P|N,φSS) (as sam-
pled by the packing protocol), and the unbiased, U(P|N,φSS),
pressure distributions. Since the configurations were sampled
proportionally to the volume of their basin of attraction, using
Eq. (6) we can compute the unbiased distribution analogously
to Eq. (25) as

U(P|N,φSS) = Q(N,φSS)B(P|N,φSS)eC(N)PN/κ, (10)

where Q(N,φSS) = 〈v〉(N,φSS) is the normalization constant.
On substitution of ln �(V ) = ln(V) − ln(〈v〉) and of

Eq. (10) for U(x|V ), we write an expression for the Edwards
entropy as a function of volume and pressure:

SB(V,P) = ln

(∫ P+δP

P
B(x|V )xN/κdx

)
+ ln(V) + C(N ) − ln(N !). (11)

We fit the empirical c.d.f. of B(P) with the generalized
log-normal c.d.f. corresponding to Eq. (28) (see Fig. 5). We
then numerically evaluate the generalized Edwards entropy
SB(P,V ) at fixed volume, as shown in Fig. 6.
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FIG. 5. Empirical cumulative distribution functions of the pres-
sures for several system sizes. Dashed lines in the corresponding
color are curves of best fit to a generalized log-normal distribution.
The curves are mostly indistinguishable. Inset: Best-fit parameters
for the generalized log-normal distribution as a function of system
size. The mean μ and scale parameter σ scale linearly with 1/N ,
while the shape parameter ζ is approximately insensitive with respect
to system size.

In the thermodynamic limit we find

sB(φSS) = 1 + c + 〈ln(P)〉B
κ

− ln(φSS) − fex(φHS), (12)

where c = C(N )/N , see Appendix F for details of the
derivation and further discussion.

In Fig. 6 we also show the predicted expectation value for
the pressure obtained via the ensemble average at arbitrary
inverse angoricity α,

〈P〉(ens)
α =

∫ ∞
0 PB(P|V )PN/κe−αPV dP∫ ∞

0 B(P|V )PN/κe−αPV dP
. (13)

IV. PACKING PREPARATION PROTOCOL

A. Sampling packings

The physical properties of granular packings may depend
strongly on the preparation protocol. This is illustrated by the
Lubachevsky-Stillinger algorithm (LSA) procedure to prepare
jammed packings of hard particles [90] by compression (or,
equivalently, by “inflation” of the particles). If a monodisperse
HS fluid is compressed rapidly, then the LSA will generate
a low volume-fraction disordered packing. However, for
(very) slow compression rates, LSA will produce dense
crystals [90,91].

In the present work, we study a fluid of polydisperse
spheres. We use a protocol related to a Stillinger-Weber quench
that maps each fluid state to a local minimum, or “inherent
structure,” connected by a path of steepest descent [86,92].

To prepare the polydisperse fluid, we draw N particle
radii {r}N from a Gaussian distribution Normal(1,σHS) > 0,
truncated at r = 0 (note that in our application the stan-
dard deviation σHS is sufficiently small that it is extremely
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FIG. 6. Top: Generalized Edwards entropy at fixed volume
fraction for various system sizes. The curves show a well-defined
maximum for all sizes, while their shape depends on the specific
parameters of the generalized log-normal that best fits the underlying
distribution of pressures. Bottom left: Comparison between the
Edwards entropy and the maximum value attained by each curve:
max[SB (P,V )] scales linearly with size and its value is progressively
closer to the marginal (total) Edwards entropy SB (V ), consistent with
the fact that SB (P,V ) is a negative exponential function, and the area
under the curve is dominated by the mode for increasing system size.
SB (V ) should constitute an upper limit to max[SB (P,V )] � SB (V )
and the two should be equivalent only in the thermodynamic limit.
Bottom right: Ensemble average of the pressure computed as a
function of inverse angoricity α and system size. The curves, in the
same color as the top figure, do not diverge and the arrows indicates
their value at α = 0.

improbable to ever sample a negative radius). We set the box
size to meet the target packing fraction of the hard sphere
fluid φHS and then place the particles in a random valid
initial hard spheres configuration. The initial configuration is
then evolved by a MC simulation [93] consisting of single-
particle random displacements and particle-particle swaps,
and after equilibration, new configurations are recorded at
regular intervals. We choose the length of these intervals
such that, on average, each particle diffuses over a distance
equal to the diameter of the largest particle. As long as φHS

is well below the volume fraction where the fluid undergoes
structural arrest, the allowed configurations of the fluid can
be sampled uniformly. Importantly, this volume fraction is
well below the random close packing (φ(RCP, 3D)

HS ≈ 0.64 and
φ

(RCP, 2D)
HS ≈ 0.82 [79]).

Given these HS fluid configurations, we now switch on the
soft, repulsive interaction to generate overcompressed jammed
packings of the particles (see Fig. 2). The particles are inflated
with a WCA-like potential [94] to reach the target soft packing
fraction φSS > φ

(RCP)
HS > φHS. The hard spheres are inflated
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proportionally to their radius, so the soft sphere radius is

rs =
(

φSS

φHS

)1/d

rh, (14)

where d is the dimensionality of the box. Clearly, this
procedure does not change the polydispersity of the sample.

B. Soft shells and minimization

We define the WCA-like potential around a hard core
as follows: Consider two spherical particles with hard-core
distance rh and soft-core contact distance rs = rh(1 + θ ), with
θ = (φSS/φHS)1/d − 1. We can then write a horizontally shifted
hard-sphere plus WCA (HS-WCA) potential as

vHS-WCA(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ r � rh,

4ε
[(

σ (rh)
r2−r2

h

)12

−(
σ (rh)
r2−r2

h

)6] + ε
rh < r < rs,

0 r � rs

(15)

where σ (rh) = (2θ + θ2)r2
h/21/6 guarantees that the potential

goes to zero at rs . For computational convenience (avoidance
of square-root evaluations), the potential in Eq. (15) differs
from the WCA form in that the interparticle distance in the
denominator of the WCA potential has been replaced with a
difference of squares. Note that this implies that our potential
resembles a 6-3 potential more than a 12-6 potential. For
our purpose, this difference is immaterial: We just need a
short-ranged repulsive potential that diverges at the hard-core
diameter and vanishes continuously at the soft-core diameter.
The functional form of this potential is very similar to the
HS-WCA potential used by Asenjo et al. [34] but cheaper to
compute. We note that this potential is a C1-type function, that
is, its first derivative is continuous but not differentiable and
its second derivative is discontinuous at rs . We take advantage
of this property for the identification of rattlers (nonjammed
particles) in our packings.

Numerically evaluating this potential, we match the gra-
dient and linearly continue the function vHS-WCA(r) for r �
rh + ε, with ε > 0 an arbitrary small constant, such that
minimization is still meaningful if overlaps do occur.

The HS-WCA pair potential was implemented using
cell lists [95,96] with periodic boundary conditions, guar-
anteeing O(N ) time complexity to the energy and gradi-
ent evaluations. Energy minimizations were performed with
the CG DESCENT algorithm [97–99] which, compared to
FIRE [96,100], reduces the average number of function
evaluations for our system by a factor of 5, while preserving
many of its desirable properties.

V. BASIN VOLUME BY THERMODYNAMIC
INTEGRATION

The basin of attraction of a given minimum-energy con-
figuration is the collection of all points connected to that
minimum via a path of steepest descent [81,101]. To measure
the volume of a basin of attraction in the PES, we use
thermodynamic integration [102,103] and parallel tempering
(PT) [93,104–106].

The basic idea behind the method is that, but for the
sign, the logarithm of the basin volume can be viewed as
a dimensionless free energy. We cannot determine this free
energy directly. We now switch on an increasingly harmonic
potential that has its minimum at the minimum of the basin.
In the limit of very large coupling constants (how large
depends on the shape of the basin) the boundaries of the
basin no longer affect the free energy of the system, which
has effectively been reduced to a dN-dimensional harmonic
oscillator with known free energy (for more details, see
Appendix D). For zero coupling constant, instead, the system is
completely unconstrained and therefore in the state of interest.
Thermodynamic integration allows us to compute the free
energy difference between a reference state of known free
energy and the (unknown) free energy associated with the
original basin of attraction.

A closely related approach is often used to compute the free
energy of crystals of particles with a discontinuous potential,
such as hard spheres [102,103,107]. Details of that method are
summarized in Appendix B, and the extension of the technique
to basin volume measurement is described below. Details of
the Hamiltonian PT are discussed in Appendix C.

A. Free energy calculation for basin volumes

To measure the volume of a basin by thermodynamic
integration, we perform a walk inside the basin, that is, we
start the MCMC random walk from the minimum energy
configuration ri and we reject every move that takes us outside
the basin [34,36,83]. This procedure can be cast in normal
Monte Carlo language by defining an effective potential energy
function (oracle) UB(r|ri) which is zero inside the basin and
infinite outside. We can then write the volume of the basin:

vi =
∫

dre−UB (r|ri ). (16)

In order for the oracle to test whether a proposed configuration
is inside or outside the basin, a full energy minimization must
be performed. The numerous potential energy calls required
for a full energy minimization represent the major obstacle to
the scalability of the method.

We view the negative log-basin-volume as a dimensionless
free energy Fi ≡ − ln(vi) [36] and compute it by thermody-
namic integration, as described in Appendix B. Therefore, we
write, analogously to Eq. (B2):

− ln vi = Fhar(kmax) − 1

2

∫ kmax

0
dk〈|r − ri |〉k, (17)

where ri denotes the coordinates of the i-th energy minimum.
Unless kmax, the maximum spring constant of the harmonic
reference system, is very large, a finite fraction of the points
belonging to the purely harmonic reference system will be
located in the region where UB = ∞.

We can correct for this effect in our calculation of Fhar(kmax)
by computing the ratio of the partition functions of a system
with a harmonic spring constant kmax, both with and without
the basin potential energy function UB . This ratio is given by

R ≡
∫

dr exp[−V (r|ri ,kmax) − UB(r|ri)]∫
dr exp[−V (r|ri ,kmax)]

, (18)
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FIG. 7. Average-squared displacement 〈|r − r0|2〉k as a function
of the spring constant k (symbols). The dashed line shows the
expression in Eq. (B8). The data are measured for a packing of
N = 32 spheres, with φHS = 0.5 and φSS = 0.7 via Hamiltonian PT.
Inset: Corresponding integrand for the thermodynamic integration,
resulting from the change of variables in Eq. (B13).

where V is the sum of the hard-core potential and the harmonic
potential with spring constant kmax, see Eq. (B1). We note
that R can be computed using a “static” (i.e., non-Markov
chain) Monte Carlo simulation, sampling directly from the
Boltzmann distribution of the harmonic oscillator with spring
constant kmax. Since the integral in the denominator is known
[see Eq. (D2)], we write the dimensionless free energy of the
harmonic reference state for basin i as

Fhar(kmax) = −dN

2
ln

(
2π

kmax

)
− lnR. (19)

We note that, in order to avoid a singularity in the integrand,
it is useful to perform the simulations fixing the center of mass
(c.m.). It follows that the same corrections to the free energy
as derived in Refs. [102,103,107] must be applied: Similarly
to Eq. (B5), but with the additional correction in Eq. (19), we
write the basin volume as:

− ln vi = �F (c.m.)− ln(Vbox)− (N − 1)d

2
ln

(
2π

kmax

)
− lnR,

(20)

where �F (c.m.) is the integral in Eq. (17), and the ensemble
averages have been computed with a constrained center of
mass and it is evaluated as in Eq. (B13).

Figure 7 shows an example of the mean-squared displace-
ment 〈|r − r0|2〉k , as a function of the spring constant k, along
with the approximate expression in Eq. (B8) used to construct
the change of variables in Eq. (B13). The resulting integrand,
after the variable transform, is shown in the inset of Fig. 7.

VI. BASIN VOLUME DISTRIBUTIONS AND
DATA ANALYSIS

Once the volumes of multiple basins have been sampled,
these data can be used to compute the number of distinct pack-
ings [34] and from that the Edwards entropy [4]. Furthermore

we analyze the distribution of pressures of the different energy
minima at given volume. In this work, we express pressure
and volume in reduced units P/P∗ and v/v∗ everywhere with
v∗ ≡ (4π/3)〈r3

h〉 andP∗ ≡ ε/v∗ being the units of volume and
pressure, respectively.

A. Gibbs configurational entropy

Let us first consider the “Gibbs” configurational entropy,
SG, defined by Asenjo et al. [34]:

SG = −
�∑

i=1

pi ln(pi) − ln(N !), (21)

where pi is the probability to sample packing i. For our
preparation protocol, packings are sampled according to the
volume of their basin of attraction, such that pi = vi/V . Then
Eq. (21) gives

SG = −
�∑

i=1

pi ln(vi) + ln(V) − ln(N !)

= 〈F 〉B + ln(V) − ln(N !). (22)

The sum in Eq. (22) is the mean of the negative log-
basin volumes (dimensionless free energies), as computed
above, and weighted by the probabilities of preparing the
corresponding basins. Therefore, the entropy can be obtained
directly, and without approximation, from the sampled mean
basin dimensionless free energy.

From Eq. (22) we can also write the entropy per particle in
the thermodynamic limit as

sG(φSS) = 1 + 〈f 〉B + ln(φSS) − fex(φHS), (23)

where fex(φHS) is the excess free energy of the hard spheres
fluid. In deriving this results we used Stirling’s approximation
for large N and the fact that Vbox/v

∗ = N/φSS.

B. Edwards configurational entropy

Edwards [4] suggested a Boltzmann-like entropy, where
S equals the logarithm of �, the total number of packings.
Asenjo et al. [34] showed that, even for polydisperse particles,
indistinguishability of macrostates requires that

SB = ln(�) − ln(N !), (24)

The subtraction of ln(N !) is necessary to guarantee extensivity
of the entropy. Unlike the Gibbs definition of entropy, Eq. (24)
makes the explicit assumption of equiprobability of states.

For a direct computation of the number of packings �,
using Eq. (3), we need the average basin volume 〈v〉. Since our
preparation protocol samples each minimum with a probability
proportional to the volume of its basin of attraction, our
samples of v are biased accordingly. Therefore, to obtain the
unbiased average basin volume 〈v〉, the sampled basin volume
distribution needs to be unbiased [34,35,83]. The unbiasing
method used in the following work requires an analytical
(or at least numerically integrable) description of the biased
basin free energy distribution function. Different approaches
to modeling this distribution give rise to somewhat different
analysis methods, which all yield consistent results. Again, we
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stress that no such additional steps are needed to compute the
“Gibbs” version of the configurational entropy.

We distinguish between the biased, B(F |N,φSS) (as sam-
pled by the packing protocol), and the unbiased, U(F |N,φSS),
free energy distributions. Since the configurations were sam-
pled proportional to the volume of their basin of attraction, we
can compute the unbiased distribution as

U(F |N,φSS) = Q(N,φSS)B(F |N,φSS)eF , (25)

where Q(N,φSS) is the normalization constant

Q(N,φSS) =
[∫ ∞

Fmin

dFB(F |N,φSS)eF

]−1

= 〈v〉(N,φSS).

(26)

From Eq. (25), unbiasing of the raw free energy distribution
seems straightforward; however, Asenjo et al. [34] noted that
the most probable basins are about O(103) more probable
than the small ones. Upon unbiasing, this factor is multiplied
by a factor of about e−20, hence they observe that small
basins are much more numerous than large ones and grossly
undersampled.

To overcome this problem, one can fit the biased measured
free energy distribution B(F |N,φSS) and perform the unbias-
ing via Eq. (26) on the best fitting distribution. B(F |N,φSS)
must be bounded, hence it should decay with a functional form
exp(−Fν) where ν > 1.

Before performing the fit we remove outliers from the
free energy distribution following the distance-based outlier
removal method introduced by Knorr and Ng [108]. This is
a form of clustering for which we choose to keep only those
points for which at least half of the remaining data set is
within 3σ from the point, where σ is the standard deviation
computed for the raw data set. This procedure typically results
in the exclusion of one or two points and it is essential for a
successful fit to a generalized Gaussian model.

1. Generalized Gaussian

Assuming that U(F |N,φSS) is unimodal, which has been
verified for very small systems [36], one can fit the raw
distribution B(F |N,φSS) with a three-parameter generalized
normal distribution,

p(F |F,σ,ζ ) ≡ ζ

2σ
(1/ζ )
exp

[
−

( |F − F |
σ

)ζ]
, (27)

where 
(x) is the gamma function, σ is the scale parameter, ζ

is the shape parameter, and F is the mean (free energy) with
variance σ 2
(3/ζ )/
(1/ζ ). In the limit ζ → 2 we recover the
Gaussian distribution with standard deviation σ . In practice, it
appears to be most stable to fit the empirical biased cumulative
distribution function rather than the histogram shape [34].
Alternatively, we also tested fitting to the observed p.d.f.
with the maximum-likelihood method, obtaining consistent,
but more scattered, results (see also Sec. III).

2. Kernel density estimate

To relax the assumption that the empirical distributions can
be fitted by a generalized Gaussian, one can also describe
the distributions by kernel density estimation [109,110].
Bandwidth selection is then done using Silverman’s rule of

thumb as the initial guess for integrated squared error cross-
validation [111]. The numerical integration step is performed,
as for the generalized Gaussian description, via Eq. (26).

C. Distribution of pressures

In Sec. III B we have established a link between the pressure
of a packing and the volume of its basin of attraction. In order to
compute the entropy as a function of volume and pressure it is
necessary to unbias the distribution of pressures with respect
to the sampling bias exp(−F ), analogously to the previous
section. We choose to describe the distribution of pressures P
using the generalized log-normal distribution [112],

p(P|ln(P),σ,ζ ) = ζ/P
2(ζ+1)/ζ σ
(1/ζ )

× exp

[
−1

2

∣∣∣∣ ln(P) − ln(P)

σ

∣∣∣∣
ζ]

, (28)

with the first term on the right-hand side being the normaliza-
tion constant and the remaining notation analogous to that of
Eq. (27). For ζ = 2 this distribution reduces to the log-normal
distribution.

VII. CONCLUSIONS

The study of a statistical mechanics of granular materi-
als has been complicated by the impossibility of directly
computing fundamental thermodynamic quantities. In the
present paper we have shown that configurational entropies
of three-dimensional packings can, in fact, be computed.

We have presented a method for the direct enumeration of
the mechanically stable states of systems consisting of up to
128 frictionless soft three-dimensional spheres and we have
shown that a definition of extensive entropy is possible, in
line with the results for two-dimensional systems reported
by Asenjo et al. [34], with very minor differences in our
observations. The study of 3D packings is computationally
demanding: The computational time required for each packing
ranged between 10 and 104 CPU hours, depending on
system size. The present study therefore required substantial
algorithmic optimization.

We find that there is an approximately linear relationship
between the logarithm of the pressure of a mechanically stable
configuration and the logarithm of the volume of its basin of
attraction.

The unexpected power-law relationship between pressure
and basin volume provides a way to extend our approach to the
generalized Edwards ensemble. We can analytically unbias the
observed distribution of pressures and compute the entropy as a
function of pressure at a given volume. Hence we have obtained
consistent expressions for the entropy in the thermodynamic
limit. Knowledge of this distribution enables the first direct
computation of angoricity.

Tackling the study of granular materials from the energy
landscapes point of view is rather advantageous, although
this does not come without burdens. This sort of approach
is limited to soft frictionless particles, and we expect it to be
reliable only at φ > φJ when the system is at least slightly
overcompressed. Other theoretical approaches are useful in
more limiting situations, see, for instance, the discussion of
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the stress ensemble in the limit φ → φJ by Henkes and
Chakraborty [26,27] and the work on the force network
ensemble for systems of almost hard grains [31–33].
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APPENDIX A: BASIN VOLUME METHOD SUMMARY

In summary, to count the number of ways spheres can pack
into a given volume, we use the mean basin volume method
outlined in Sec. II. We perform the following simulations and
analysis steps to obtain the required results:

(1) Obtain a number of different snapshots of an equili-
brated hard sphere fluid at the desired volume fraction φHS,
as described in Sec. IV A. This procedure fixes the number of
measured basin volumes.

(2) Overcompress the sphere configuration by adding a
soft shell. This compression yields, on energy minimization, a
jammed packing with soft volume fraction φSS > φHS.

(3) Estimate the maximum spring constant for the PT
simulations, kmax in Eq. (17), such that ρ in Eq. (18) reaches
a value between 0.85 and 0.9. This is done by direct sampling
and also gives the value of the average-squared displacement
for kmax,〈|r − r0|2〉kmax

.
(4) Obtain a preliminary estimate of the average-squared

displacement without harmonic tethering, 〈|r − r0|2〉0, by
performing a MCMC walk in the basin. Use this result, with
the estimate of kmax from the previous step, to determine the
spring constants k for the PT simulation, using Eqs. (B11)
and (B14).

(5) Perform a PT simulation to sample 〈|r − r0|2〉k , as
described in Appendix C.

(6) Compute the volume in Eq. (20) for each basin and
analyze the distributions for all basins, at fixed volume fraction
and number of particles, as discussed in Sec. VI. This makes
use of the total accessible volume, computed in Appendix E.

Section III shows examples of the type of results that
can be obtained. Evaluation and minimization of potential
energy functions was performed with the PELE [96] and
PYCG_DESCENT [99] software packages. Monte Carlo simu-
lations were performed with the MCPELE package [93].

APPENDIX B: FREE ENERGY CALCULATION
FOR SOLIDS

To compute the free energy of a system with discontinuous
potential energy function (e.g., hard disks or hard spheres), we
construct a reversible path to the corresponding Einstein solid
(see, e.g., Ref. [107]). The harmonic potential with spring

constant k is switched on while maintaining the hard-core
interactions intact:

V (r|r0,k) = VHS(r) + kVhar(r|r0) = VHS(r) + 1
2k|r − r0|2,

(B1)

where r0 are the equilibrium coordinates of the Einstein
crystal and VHS(r) denotes the hard-core interactions. We can
then compute the free energy difference between the Einstein
crystal and the hard-core system by evaluating the integral:

FHS = Fhar(kmax) −
∫ kmax

0
dk

〈
∂V (r|r0,k)

∂k

〉
k

. (B2)

As discussed in Appendix D, we take the center of mass to
be fixed to avoid numerical issues in the limit k → 0. For a
system with fixed center of mass, we write the free energy
difference between the target and the reference state as

�F (CM) ≡ F (c.m.) − F
(c.m.)
har . (B3)

From the partition function of the Einstein crystal with fixed
center of mass, Eq. (D7), and for the unconstrained crystal,
Eq. (D11), we can rewrite Eq. (B3) and rearrange it for the
free energy of the unconstrained crystal:

F = �F (c.m.) + ln[P(rCM = 0)]

+ d

2
ln

(
2π

∑
i μi

kmax

)
− Nd

2
ln

(
2π

kmax

)
, (B4)

where the last term is Fhar and the second and third terms
on the right-hand side are the center-of-mass corrections
for the unconstrained and the constrained solid, respectively.
For a system with unit cell identical to the simulation box
(with periodic boundary conditions), we have P(rCM = 0) =
1/Vbox. Assuming that all particles have unit mass we can
rewrite Eq. (B4) as

F = �F (c.m.) − ln(Vbox) − (N − 1)d

2
ln

(
2π

kmax

)
. (B5)

We are only left with �F (c.m.), which can be found by
evaluating the integral in Eq. (B2). In order to do so, we would
like the integrand to be a well-behaved function, possibly
flat, permitting Gauss-Lobatto (GL) quadrature [113]. We
transform the integration variable so

�F (c.m.) =
∫ kmax

0

dk

g(k)
g(k)

1

2
〈|r − r0|2〉(c.m.)

k

=
∫ G−1(kmax)

G−1(0)
d[G−1(k)]g(k)

1

2
〈|r − r0|2〉(c.m.)

k , (B6)

where g(k) is some function of k and G−1(k) is the primitive
of the function 1/g(k).

To choose an appropriate g(k), we note that in Eq. (D8) for
very large k the mean-squared displacement for the solid is

〈|r − r0|2〉kmax = (N − 1)d

kmax
. (B7)

For k other than kmax, we expect the mean-squared displace-
ment to depend on some effective spring constant. Hence we
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write

〈|r − r0|2〉k ≈ (N − 1)d

(k + ξ )
, (B8)

such that the mean-squared displacement at k = 0 is

〈|r − r0|2〉k=0 ≈ (N − 1)d

ξ
, (B9)

from which we find ξ = (N − 1)d/〈|r − r0|2〉k=0 [note that we
can self-consistently replace this definition for ξ in Eq. (B8) to
obtain an approximation for the mean-squared displacement
at arbitrary k]. We would like the integrand g(k)〈|r − r0|2〉k
in Eq. (B6) to be roughly constant. Given the considerations
above we choose g(k) ≈ k + ξ. One can easily verify that the
integrand is now approximately constant. We can then rewrite
the integral in Eq. (B6) as

�F (c.m.)=
∫ ln(kmax + ξ )

ln(ξ )

{
(k + ξ )

1

2
〈|r−r0|2〉k(c.m.)d[ln(k+ξ )]

}
.

(B10)

Finally, to integrate Eq. (B10) by GL quadrature, we require a
variable, t , such that the integral upper and lower bounds are
[−1,1]:

t = 2 ln(1 + k/ξ ) − 1

ln(1 + kmax/ξ )
(B11)

with differential

dt = 2

ln(1 + kmax/ξ )
d[ln(1 + k/ξ )]. (B12)

Therefore we rewrite Eq. (B10) as a function of t :

�F (c.m.) =
∫ 1

−1

{
dt ln

(
1 + kmax

ξ

)

× [k(t) + ξ ]
1

4
〈|r − r0|2〉k(c.m.)

}
, (B13)

where k(t) can be found by rearranging Eq. (B11). An example
of the variable transform is shown in Fig. 7.

It is straightforward to perform GL quadrature for a general
number of abscissas n � 2 [113], because

∫ 1

−1
dtf (t) = w1f (−1) +

n−1∑
i=2

wif (ti) + wnf (1), (B14)

where wi are the weights and ti are the abscissas. The abscissas
differing from −1,1 are the n − 2 roots of dPn−1(t)/dt ,
with Pn−1 a Legendre polynomial. We evaluate this sum
numerically using Numpy’s Legendre module [114]. The
weights wi can also be evaluated numerically for general
n � 2, since they are related to Pn−1 evaluated at ti [113].
For all results in this work, we choose n = 16 abscissas.

APPENDIX C: SAMPLING THE INTEGRAND:
HAMILTONIAN PARALLEL TEMPERING

To compute the integral in Eq. (B13), we need to measure
the integrand for different values of k, as given by Eq. (B11).

Equilibration of the corresponding simulations can be accel-
erated using extensions of the parallel tempering technique,
where replicas differ in chemical potential [115] or in the
potential energy function [116,117].

The parallel-tempering acceptance rule for a swap of
configurations between replicas with different Hamiltonians
follows from the condition of detailed balance:

acc[(ri ,Vi),(rj ,Vj ) → (rj ,Vi),(ri ,Vj )]

acc[(ri ,Vj ),(rj ,Vi) → (ri ,Vi),(rj ,Vj )]

= exp{−β[Vi(rj ) + Vj (ri)]}
exp{−β[Vi(ri) + Vj (rj )]}

= exp(−β{[Vi(rj ) + Vj (ri)] − [Vi(ri) + Vj (rj )]}),
(C1)

where acc[· → ·] denotes the swap acceptance probability. For
the particular case of replicas coupled to a reference state r0

by a harmonic potential with different coupling strengths ki ,
we find the swap acceptance rule

acc[(ri ,Vi),(rj ,Vj ) → (rj ,Vi),(ri ,Vj )]

= min

{
1, exp

[
β

2
[(kj − ki)(|rj − r0|2 − |ri − r0|2)

]}
.

(C2)

To check whether the replicas are well equilibrated, we
consider the correlations in the “time series” of |r − r0|k versus
number of Monte Carlo steps for each replica.

APPENDIX D: EINSTEIN CRYSTAL

The harmonic potential is defined as follows:

V (r|r0,k) = k

2
|r − r0|2 = k

2

N∑
i

|ri − ri,0|2, (D1)

where r0 denotes the equilibrium position and the index i

denotes the i-th of N particles, each with d degrees of freedom,
and we have assumed that the spring constant k is the same for
all directions of motion. We can compute the mean-squared
particle displacement for a harmonic oscillator in the canonical
ensemble analytically. We start with the partition function:

ZNVT =
(

2π

βk

) dN
2

. (D2)

We consider the free energy for the system F = −β−1 ln Z

and observe that[
∂F (k)

∂k

]
NVT

= −β−1 ∂

∂k
ln Z = −(βZ)−1 ∂Z

∂k
ln Z

=
∫ ∞
−∞ drdN 1

2 |r − r0|2e−βk|r−r0|2/2∫ ∞
−∞ drdNe−βk|r−r0|2/2

= 1

2
〈|r − r0|2〉, (D3)
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hence we can compute the mean-squared distance for a dN-
dimensional harmonic oscillator

〈|r − r0|2〉 = 2

[
∂F (k)

∂k

]
NVT

= dN

βk
. (D4)

For thermodynamic integration we are interested in the limit
k → 0. In this limit there is no penalty for moving the system
as whole, hence the mean-squared displacement becomes of
the order of L2, where L is the box side length. This result
means that the function 〈|r − r0|2〉k will be strongly peaked at
k = 0, thus making its integration difficult. For this reason, we
would like this function to vary slowly with k. This behavior
can be achieved by fixing the center of mass of the system, so
drifting as a whole is forbidden [107].

The center of mass is defined as:

rc.m. =
∑

i

μiri , where μi = mi∑
i mi

. (D5)

When computing the potential energy for the harmonic spring,
we must apply the following correction:

∣∣r(C) − r(C)
0

∣∣2 =
N∑
i

∣∣r(U )
i − r(U )

i,0 − �r(c.m.)
i

∣∣2
, (D6)

where i is the index for the i-th particle and C and U denote
the corrected and the uncorrected coordinates, respectively.
The configurational partition function requires a correction,
hence we define the corrected partition function Zc.m. with
center-of-mass fixed at rc.m. = 0 and note that:

Zc.m. =
∫ ∞

−∞
drdNe−βk|r−r0|2/2δ

(∑
i

μiri

)

=
(

βk

2π
∑

i μ
2
i

)d/2(2π

βk

)Nd/2

=
(

βk

2π
∑

i μ
2
i

)d/2

Z,

(D7)

where solution of the integral was obtained after a fair amount
of algebra by rewriting the Dirac delta as the Fourier sum
δ(x) = 1/(2π3)

∫
dk exp(ikx) [103,118].

Using Eq. (D4) we find the mean-squared displacement for
the constrained Harmonic oscillator:

〈|r − r0|2〉(c.m.) = 2

[
∂F c.m.(k)

∂k

]
NVT

= (N − 1)d

βk
. (D8)

This result can be interpreted as the mean-squared displace-
ment of the (N − 1)d harmonic oscillator: fixing the center
of mass is equivalent to fixing one particle and integrating
Eq. (D7) over the remaining degrees of freedom by doing
the change of variables r′

i = ri − rN (conveniently with unit
Jacobian) if the N -th particle is fixed.

To conclude, let us relabel the potential as

V (r|r0,k,λ) = (1 − λ)�(r) + 1
2λk|r − r0|2, (D9)

where �(r) is an arbitrary field; it could be, for instance, an
additional interatomic interaction independent of k or even the
zero field. Let us consider the limit λ → 0: from the ratio of
the partition functions for the constrained and unconstrained

center of mass, we find:

Zc.m.(λ = 0)

Z(λ = 0)
=

∫ ∞
−∞ drdNe−β�(r)δ

( ∑
i μiri

)
∫ ∞
−∞ drdNe−β�(r)

=
〈
δ

(∑
i

μiri

)〉
= P(rc.m. = 0), (D10)

where δ is the Dirac delta function and P(rc.m. = 0) is the
probability density of the center of mass being at 0 when
λ = 0. Hence we write:

Zc.m.(λ = 0) = Z(λ = 0)P(rc.m. = 0), (D11)

where P depends on the details of the system. If the equi-
librium structure is invariant to translations, then a condition
that holds true in a system with periodic boundary conditions,
then we can take P = 1/Vcell, where Vcell is the smallest
repeating unit in the periodic system (unit cell). This is at
worst Vcell = Vbox, while for a fcc Einstein crystal it would
correspond to the Wigner-Seitz cell Vcell = Vbox/N [102].

APPENDIX E: POLYDISPERSE HARD-SPHERE FLUID
AND TOTAL ACCESSIBLE VOLUME

We can write the total accessible volume as

− lnV(N,φ) = −N ln Vbox + Nfex(φ), (E1)

where φ is the volume fraction and fex(φ) is the excess free
energy, which is the difference in free energy between the hard
sphere fluid and the ideal gas. We can compute the excess free
energy by thermodynamic integration [107]. We start by noting
that ∂F/∂(1/Vbox) = V 2

boxP and define the number density
ρ = N/Vbox, hence we write

fex(ρ) = F (ρ)

N
− F (id)(ρ)

N
=

∫ ρ

0
dρ ′

[
P (ρ ′) − ρ ′

ρ ′2

]
. (E2)

By noting that the volume fraction of a polydisperse system
is φ = vdρ〈σd〉 [119], where vd is the volume of the d-
dimensional unit sphere and 〈σd〉 is the d-th moment of the
distribution of diameters, we can change variable and write

fex(φ) = F (φ)

N
− F (id)(φ)

N
=

∫ φ

0
dφ′

[
Z(φ′) − 1

φ′

]
, (E3)

where Z(φ) = P/ρ is the compressibility factor (we set β = 1
everywhere).

Analytical approximations for the compressibility factors
for the two- and three-dimensional polydisperse hard sphere
fluid have been proposed. For the hard disk fluid we use the
Santos-Yuste-Haro (eSYH) equation of state [119],

Z
poly
eSHY(φ) = 〈σ 〉2/〈σ 2〉

1 − 2φ + (2φ0 − 1)φ2/φ2
0

+ 1

1 − φ

(
1 − 〈σ 〉2

〈σ 2〉
)

, (E4)

where φ0 = π/
√

12 is the crystalline close packing fraction.
For three-dimensional fluids, depending on the volume

fraction, we choose two different equations of state. For
volume fraction φ > 0.5, Santos et al. [119] suggest the
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following equation of state based on the Carnahan-Startling
(CS) equation of state for the monodisperse fluid:

Z
poly
eCS (φ) = 1 +

[
1 + φ + φ2 − φ3

(1 − φ)3
− 1

]

× 〈σ 2〉
2〈σ 3〉2

(〈σ 2〉2 + 〈σ 〉〈σ 3〉)

+ φ

1 − φ

[
1 − 〈σ 2〉

〈σ 3〉
2

(2〈σ 2〉2 − 〈σ 〉〈σ 3〉)
]
.

(E5)

For volume fractions φ � 0.5 the eCSK equation of state
should be preferred (based on the Carnahan-Starling-Kolafa
equation of state for the monodisperse fluid)

Z
poly
eCSK(φ) = Z

poly
eCS (φ)

+ φ3(1 − 2φ)

(1 − φ)3

〈σ 2〉
6〈σ 3〉2

(〈σ 2〉2 + 〈σ 〉〈σ 3〉).
(E6)

The excess free energy can thus be obtained by substituting
one of Eqs. (E4)–(E6) in the integral of Eq. (E3), which can
then be evaluated numerically for the desired volume fraction.

APPENDIX F: THERMODYNAMIC LIMIT OF THE
GENERALIZED CONFIGURATIONAL ENTROPY

From the fit to the empirical c.d.f. of B(P) with the
generalized log-normal cumulative distribution function, cor-
responding to Eq. (28), we obtain the set of parameters μ, σ ,
and ζ . From the inset in Fig. 5, we observe that the mean μ

and scale parameter σ scale linearly with 1/N . In particular we
note that σ seems to approach zero in the thermodynamic limit,
as expected. Furthermore we note that the shape parameter

ζ seems to be approximately independent of 1/N and to
have a value of approximately 2 for all system sizes, thus
suggesting that the distributions of pressures are consistent
with a log-normal distribution.

Therefore, under the reasonable assumption that the biased
distribution of pressures B(x|V ) is log-normal, we write the
integrand in Eq. (11) as

I (x; μ,σ,N ) ≡ B(x|V )xN/κ

= 1

x
√

2πσ 2
exp

[
− (ln(x) − μ)2

2σ 2
+ N

κ
ln(x)

]
,

(F1)

which is a unimodal distribution with mode xM =
exp(Nσ 2/κ + μ − σ 2). The distribution is such that∫ ∞

0
I (x; μ,σ,N )dx = exp

(
σ 2N2

2κ2
+ Nμ

κ

)
. (F2)

Since σ ∝ 1/N , for large N we have
∫ ∞

0 I (x; μ,σ,N �
κ)dx = ε exp(Nμ/κ), with ε some constant. Thus in the ther-
modynamic limit (N,V,1/σ → ∞) we obtain the expression
for the Gibbs configurational entropy per particle, see Eq. (12).

Consider Eq. (6) which we rewrite in terms of the
dimensionless free energy per particle

f (P|φSS) ≡ − 1

N
ln(v) = c + 1

κ
ln(P), (F3)

where c = C(N )/N ; to test the consistency of the results thus
obtained we compare the expression for Edwards configu-
rational entropy, see Eq. (12), to the Gibbs configurational
entropy per particle, see Eq. (23). We thus find that

〈f 〉B = c + 1

κ
〈ln(P)〉B, (F4)

which is consistent with Eq. (F3) in the thermodynamic
limit. We have thus correctly recovered the power-law relation
between pressure and basin volume, Eq. (6).
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