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Structural analysis of high-dimensional basins of attraction
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We propose an efficient Monte Carlo method for the computation of the volumes of high-dimensional bodies
with arbitrary shape. We start with a region of known volume within the interior of the manifold and then use
the multistate Bennett acceptance-ratio method to compute the dimensionless free-energy difference between a
series of equilibrium simulations performed within this object. The method produces results that are in excellent
agreement with thermodynamic integration, as well as a direct estimate of the associated statistical uncertainties.
The histogram method also allows us to directly obtain an estimate of the interior radial probability density
profile, thus yielding useful insight into the structural properties of such a high-dimensional body. We illustrate
the method by analyzing the effect of structural disorder on the basins of attraction of mechanically stable
packings of soft repulsive spheres.
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I. INTRODUCTION

In science we often face, and occasionally confront, the
following question: “Can we estimate the a priori probability
of observing a system in a very unlikely state?” An example
is “how likely is a given disordered sphere packing?,” not to
mention questions such as “how likely is life, or the existence
of a universe like ours?” within the context of dynamical
systems and of the multiverse. In a number of cases, where the
states correspond to extrema in a high-dimensional function,
this question can be narrowed down to the following: “How
large is the ‘basin of attraction’ of a given state?” In such cases,
estimating the probability of observing a particular state is
equivalent to computing the volume of the (high-dimensional)
basin of attraction of this state. That simplifies the problem, but
not by much [1,2]: Analytical approaches are typically limited
to highly symmetric (often convex) volumes, while “brute-
force” numerical techniques can deal with more complex
shapes, but only in low-dimensional cases. Computing the
volume of an arbitrary, high-dimensional body is extremely
challenging. For instance, it can be proved that the exact
computation of the volume of a convex polytope is a NP-hard
problem [3,4] and, of course, the problem does not get any
easier in the nonconvex case.

Yet, the importance of such computations is apparent: The
volume of the basin of attraction for the extrema of a generic
energy landscape, be that of biological molecules [5], an
artificial neural network [6–8], a dynamical system [9,10],
or even of a “string theory landscape” (where the minima
corresponds to different de Sitter vacua [11,12]), is essential
for understanding the systems’ behavior.

In high dimensions, simple quadrature and brute-force
sampling fail [13] and other methods are needed. In statistical
mechanics, the problem is equivalent to the calculation of
the partition function (or, equivalently, the free energy) of
a system, and several techniques have been developed to
tackle this problem (see, e.g., Ref. [14]). The earliest class
of techniques to compute partition functions is based on
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thermodynamic integration (TI) [14–16], which is based on the
idea that a transformation of the Hamiltonian of the system can
transform an unknown partition function into one that is known
analytically. More recent techniques include histogram-based
methods [Wang-Landau [17], parametric, and nonparametric
weighted histogram analysis method (WHAM) [18]] or nested
sampling [19,20]. In essence, all these techniques reduce
the computation of the partition function to the numerical
evaluation of a one-dimensional integral.

Among the above methods, nested sampling and Wang-
Landau are Monte Carlo algorithms in their own right, that
produce the (binned) density of states as a by-product. On
the other hand, TI can be identified as a particular umbrella
sampling scheme [14] that outputs multiple sets of equilibrium
states that can be analyzed either by numerical quadrature
(e.g., see the Einstein crystal method [21]), or by WHAM and
the multistate Bennet acceptance-ratio method (MBAR). All
the above methods can be used to compute high-dimensional
volumes. However, the choice of the MBAR method [22] is
an optimal one. Not only is MBAR nonparametric (no binning
is required) and has the lowest known variance reweighting
estimator for free-energy calculations, but it also eliminates
the need for explicit numerical integration of the density of
states, thus reducing to a minimum the number of systematic
biases.

One reason why brute-force methods are not suited to
estimate the volumes of high-dimensional bodies is that for
such bodies the volume of the largest inscribed hypersphere
quickly becomes negligible to the volume of the smallest
circumscribed hypersphere—and most of the volume of the
circumscribed hypersphere is empty. Hence, using a Monte
Carlo “rejection method” to compute the volume of the
nonconvex body as the fraction of volume contained in a
hypersphere [23,24] does not yield accurate results: The largest
contribution should come from points that are barely sampled,
if at all.

In this Rapid Communication we show that MBAR can
be used not only to arrive at an accurate estimate of a high-
dimensional, nonconvex volume, but that it also can be used
to probe the spatial distribution of this volume.
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II. COMPUTING HIGH-DIMENSIONAL VOLUMES

Our aim is then to measure the volume of an n-dimensional
connected compact manifold � ⊆ Rn with boundaries. We
require this body to be “well guaranteed,” i.e., it has both
an inscribed and a circumscribed hypersphere [2]. To explore
different parts of the nonconvex volume, we use a spherically
symmetric bias that either favors the sampling of points
towards the center, or towards the periphery. We start by
performing a series of K + 1 random walks under differ-
ent applied bias potentials, similarly to the Einstein-crystal
method [21]. We refer to each of the walkers as a “replica” Ri .
Unlike TI, where biasing is always “attractive” (i.e., it favors
larger confinement), in MBAR we are free to choose both
attractive and repulsive bias potentials (see the Supplemental
Material [25] for details of our implementation). Additionally
MBAR uses the full posterior distribution (hence all moments)
rather than just the average log-likelihood computed over
the posterior, as for TI. The present method directly yields
an estimate for the statistical uncertainty in the results that
depends on the full distributions and is sensitive to their
degree of overlap, thus making the method more robust to
undersampling. In contrast, TI would require an expensive
resampling numerical procedure to achieve the same objective.

The Markov chain Monte Carlo (MCMC) random walk of
replica i ∈ [0,K] will generate samples with unnormalized
probability density qi(x), which for a standard Metropolis
Monte Carlo walk is

qi(x) ≡ e−βiUi (x), (1)

with biasing potential Ui(x) and inverse temperature βi ; from
now on we assume βi = 1 for all walkers Ri , without loss of
generality. The normalized probability density is then

pi(x) = Z−1
i qi(x), (2)

with normalization constant

Zi =
∫
Rn

qi(x)dx. (3)

We require that the bias potential Ui(x) can be factorized as

Ui(x) = χ�(x)ui(x), (4)

where ui is the reduced potential function and χ�(x) is the
“oracle” [2], such that for all choices of ui(x),

Ui(x) =
{
ui(x) if x ∈ �,

∞ if x �∈ �.
(5)

We thus have that the normalization constant in Eq. (3)
becomes an integral over the manifold �,

Zi =
∫
Rn

e−Ui (x)dx =
∫

�

e−ui (x)dx. (6)

If replica RM is chosen to have bias uM = 0, by definition
Eq. (6) becomes the volume V�. Hence if we can compute the
partition function for the reduced potential function uM = 0,
we can compute the volume V�.

The MBAR method [22] is a binless and statistically
optimal estimator to compute the difference in dimensionless
free energy for multiple sets of equilibrium states (trajectories)

{x}i obtained using different biasing potentials ui(x). The
difference in dimensionless free energy is defined as

�f̂ij ≡ f̂j − f̂i = − ln

(
Zj

Zi

)
, (7)

which can be computed by solving a set of self-consistent
equations as described in Ref. [22]. Note that only the
differences of the dimensionless free energies are meaningful
as the absolute values f̂i are determined up to an additive
constant and that the “hat” indicates MBAR estimates for the
dimensionless free energies, to be distinguished from the exact
(reference) values.

Let us define the volume Vω = πn/2rn
ω/�(n/2 + 1) of an

n-ball ω ⊆ � with radius rω centered on x0 and absolute
dimensionless free energy fω = − ln Vω. For instance, when
the volume of a basin of attraction in a potential energy
landscape is to be measured, x0 is chosen to be the minimum
energy configuration and ω ⊆ � the largest n-ball centered
at x0 that fits in �. We also define {x}i to be the set of
states sampled with biasing potential ui and {x}ω = ∪K

i=0{x :
|x − x0| � rω}i to be the set of states resampled within ω with
reduced potential,

uω(x) =
{

0 if |x − x0| � rω,

∞ if |x − x0| > rω.
(8)

In other words, we augment the set of states with the additional
reduced potential uω. Note that MBAR can compute free-
energy differences and uncertainties between sets of states
not sampled (viz., with a different reduced potential function)
without any additional iterative solution of the self-consistent
estimating equations (see Ref. [22] for details).

Computing the free-energy difference between the sets of
equilibrium states {x}ω and {x}M , chosen to have reduced
potentials uM = 0 and uω, we find that the absolute free energy
for the unbiased set of states {x}M is

fM = fω + (f̂M − f̂ω), (9)

where the free-energy difference f̂M − f̂ω is obtained by
MBAR with associated uncertainty δ�f̂Mω. The volume of
the manifold is then just V� = exp(−fM ) with uncertainty
δV� = V�δ�f̂Mω. Note that the set of biasing potentials ui

must be chosen so that there is sufficient overlap between each
neighboring pair of pi(x). For instance, for the harmonic bias
ui = ki |x − x0|2/2 we must choose a set of coupling constants
ki so that all neighboring replicas have a sufficient probability
density overlap.

Under an appropriate choice of biasing potential, the present
method may yield information, such as the radial posterior
probability density function, as an easy to compute by-product
(details are discussed in the Supplemental Material [25]).

III. BASINS OF ATTRACTION IN HIGH DIMENSIONS

We define a basin of attraction as the set of all points
that lead to a particular minimum energy configuration by
a path of steepest descent on a potential energy surface (PES).
Exploring a basin of attraction is computationally expensive
because each call to the oracle function χ�(x) requires a
full energy minimization and equilibrating a MCMC on a

031301-2



RAPID COMMUNICATIONS

STRUCTURAL ANALYSIS OF HIGH-DIMENSIONAL . . . PHYSICAL REVIEW E 94, 031301(R) (2016)

high-dimensional support is difficult [26–29]. For this reason
little is known about the geometry of these bodies [27,29–31].

Ashwin et al. [24] defined the basin of attraction as the
collection of initial zero-density configurations that evolve to a
given jammed packing of soft repulsive disks via a compressive
quench. On the basis of “brute-force” calculations on low-
dimensional systems, Ashwin et al. suggested that basins of
attraction tend to be “branched and threadlike” away from
a spherical core region. However, the approach of Ref. [24]
breaks down for higher-dimensional systems for which most
of the volume of the basin is concentrated at distances from the
“minimum” where the overwhelming majority of points do not
belong to the basin. The method that we present here allows
us to explore precisely those very rarified regions where most
of the “mass” of a basin is concentrated.

In general, the representation of all high-dimensional
convex bodies should have a hyperbolic form such as the one
proposed in the illustration by Ashwin et al. due to the expo-
nential decay in the volume of parallel hypersections (slices)
away from the median (or equator) [32]. This holds true even
for the simplest convex bodies, such as the hypercube, and the
underlying geometry need not be “complicated,” as one would
guess at first from the two-dimensional representation. For the
simplest cases of the unit d-sphere and the unit d-cube, it can be
shown that most of the volume is contained within O(1/d) of
the boundary and that at the same time the volume is contained
in a slab O(1/

√
d) and O(1) from the equator, irrespective of

the choice of north pole, respectively [1,33]. Hence, there is
virtually no interior volume. Such phenomena of concentration
of measure are ubiquitous in high-dimensional geometry and
are closely related to the law of large numbers [33].

As we will show, the results presented by Ashwin et al. are,
within the resolution available to their method, qualitatively
consistent with those for a simple (unit) hypercube.

Effect of structural disorder on the basins of attraction of
jammed sphere packings

We characterize the basins of attraction for a number of 32
hard-core plus soft-shell three-dimensional sphere packings,
analogous to the ones described in Ref. [29]. The soft-shell
interactions are short ranged and purely repulsive (the full
functional form of the potential and further technical details are
reported in the Supplemental Material [25]). We systematically
introduce structural disorder by preparing packings with
(geometrically) increasing particle size polydispersity η, i.e.,
the (positive) radii are sampled from a normal distribution
N (1,η). For each η we prepare ∼10 packings at a soft packing
fraction φ = 0.741 48 with a soft- to hard-sphere radius
ratio of rSS/rHS = 1.12. The particles are placed initially
in an fcc arrangement xfcc and then relaxed via an energy
minimization to a mechanically stable state x0. Thus, for the
lowest polydispersities the packings remain in a perfect fcc
structure and with increasing η they progressively move away
into a disordered glassy state. For the largest polydispersity,
for which hard-core overlaps do not allow an initial fcc
arrangement, we sample a series of completely random initial
states followed by an energy minimization. Note that even
for η ≈ 0, due to the high packing fraction, starting from a
completely random set of coordinates, an energy minimization
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FIG. 1. Structural disorder as a function of polydispersity η is
quantified by the average coordination number Z (gray diamonds)
and the Q6 bond orientational order parameter (blue circles); error
bars correspond to one standard deviation of the distribution of values
per particle. The basin shape is characterized by the asphericity factor
Ad (green triangles) and the mean distance of the center of mass from
the minimum (orange squares); error bars correspond to the standard
error. Solid and open markers correspond to packings obtained
starting from an fcc and a disordered arrangement, respectively. The
dotted lines show the η after which, in order, Z, Ad , and Q6 change
from the fcc value.

does not lead to the fcc crystal but rather to the closest glassy
state (inherent structure). We are interested in the effect of
structural disorder on the shape of the basin of attraction for
the soft-sphere packings.

We determine the amount of structural disorder in the
packing by computing the Q6 bond orientational order
parameter [34] and the average number of contacts per particle
Z, shown in Fig. 1. As the polydispersity of the system is
increased, the coordination number Z decays monotonically
from the close-packed value of 12 to a value Zfcc > Z > Ziso,
where Ziso = 6 is the average contact number at isostaticity
for a three-dimensional packing of frictionless spheres [35].
The Q6 order parameter, computed using a solid-angle based
nearest-neighbor definition [36], decays from its fcc value well
after the contact number has dropped below the close-packed
value of 12.

We start characterizing the shape of the high-dimensional
basins of attraction associated with these packings by per-
forming an unconstrained random walk within the basin and
performing a principal component analysis (PCA) on the tra-
jectory thus obtained [13]. PCA yields a set of eigenvectors that
span the d-dimensional configurational space with associated
eigenvalues λ1, . . . ,λd . If the basin possesses d-dimensional
spherical symmetry, then all the eigenvalues are expected to
be equal. A measure of the shape of a random walk is then the
asphericity factor [37]

Ad =
∑

i>j (λi − λj )2

(d − 1)
( ∑d

i=1 λi

)2 , (10)

that has a value of 0 for a spherically symmetric random
walk and of 1 for a walk that extends only in one dimension.
Furthermore, we compute the distance of the center of mass
(c.m.) position from the minimum energy configuration for
the random walk, |〈x〉 − x0|. This quantity reveals whether
or not the basin is isotropic around the minimum. Both
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FIG. 2. The top plot shows the measured basin radial probability
density function h(r) (DOS) for packings at different polydispersities.
The solid and dashed blue curves correspond to the DOS of a 93D
hypercube, measured from the center of mass (“isocube”) and from
a point in one of the corners. The top inset shows the cumulative
distribution function for h(r). The bottom panel shows the logarithm
of the ratio of the DOS of the basin and of a 93D hyperball. The
bottom inset shows the set of barely distinguishable overlapping
curves measured for low polydispersities. The top and bottom plots
share the x axis.

quantities, averaged over all packings, are plotted as a function
of polydispersity in Fig. 1 along with the structural order
parameters. Interestingly, we observe that for low η the basins
are, on average, spherically symmetric and isotropic around the
minimum. With the onset of structural disorder we observe
a marginal increase in asphericity and in the c.m. distance
from the minimum. In order to observe a significant change,
however, we need to go to the fully disordered packings
at higher polydispersity. With increasing polydispersity, we
observe significant changes in the structural order parameters
and in the asphericity factor Ad and c.m. distance from the
minimum.

The implementation details of the MBAR method that we
have used are discussed in the Supplemental Material [25].
Using this method to compute the volume of the basins of
attraction, we find excellent agreement with thermodynamic
integration (see Fig. S2). As a natural by-product of the
computation we are able to compute the radial probability
density function (DOS), shown in Fig. 2 together with the
logarithm of the ratio between the measured DOS, and that
of a d-hypersphere. The log-ratio curves clearly show that

all basins have a well-defined hyperspherical core region,
where the curves are flat around 0, followed by a series of
exponential decays at larger distances from the minimum.
For η < 10−4 the curves are mostly indistinguishable from
one another with most of the probability mass concentrated
between 1 < r < 3, as it can be seen from the inset showing
the corresponding cumulative distribution function (CDF). For
higher polydispersity, the DOS curves have ever longer tails,
as it is also shown by the systematic shift in the CDF.

Importantly, the curves show that a “rejection” method to
measure the basin volume will fail. In this method, the volume
of the basin is determined by integrating the fraction of points
on a hypershell with radius r that fall inside the basin. That
fraction is the function shown in the bottom panel of Fig. 2.
The most important contribution to the integral would come
from the range of r values where h(r) (top panel of Fig. 2)
has a significant value. As can be seen from the figure, for
disordered systems this happens for values of r where the
fraction of hypersphere points within the basin is extremely
small, in the example shown, O(10−30). Hence, the dominant
part of the integral would come from parts that are never
sampled.

To interpret our results for the DOS curves, it is useful
to compare with the corresponding result for a unit hypercube
(see Fig. 2). In one instance we do so by placing the “origin” of
the hypercube at its c.m., and in another by placing the origin
on one of the 2d corners of the hypercube, to generate a DOS
of a system with a very anisometric density distribution. Not
surprisingly, moving the origin of the system from the center
to the corner of a hypercube has a dramatic effect on the shape
of the DOS, which is now much more similar to the curves for
large η, with similar characteristic changes of slope observed
for the basins. Again, this agrees with the observation that the
c.m. distance increases with increasing structural disorder. The
effect of the basin asphericity, as measured by the asphericity
factor Ad , is difficult to infer from the DOS alone.

We thus observe that the structural isotropy and high degree
of rotational symmetry in the crystal, as indicated by the Q6

parameter, is reflected in the isotropy and spherical symmetry
of the basin around the minimum, even for relatively large
polydispersities when the average contact number has already
dropped considerably from the close-packed value. Similarly,
the structural disorder at larger η is reflected in the anisotropy
and asphericity of the basin. Hence, changes in the basin
structure, as indicated by the asphericity factor, the c.m., and
the density profile, occur before any observable changes occur
in Q6 and after the average contact number (Z � 9) has fallen
well below the close-packed value of 12.
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