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Vicsek model by time-interlaced compression: A dynamical computable information density
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Collective behavior, both in real biological systems and in theoretical models, often displays a rich combi-
nation of different kinds of order. A clear-cut and unique definition of “phase” based on the standard concept
of the order parameter may therefore be complicated, and made even trickier by the lack of thermodynamic
equilibrium. Compression-based entropies have been proved useful in recent years in describing the different
phases of out-of-equilibrium systems. Here, we investigate the performance of a compression-based entropy,
namely, the computable information density, within the Vicsek model of collective motion. Our measure is
defined through a coarse graining of the particle positions, in which the key role of velocities in the model
only enters indirectly through the velocity-density coupling. We discover that such entropy is a valid tool in
distinguishing the various noise regimes, including the crossover between an aligned and misaligned phase of
the velocities, despite the fact that velocities are not explicitly used. Furthermore, we unveil the role of the time
coordinate, through an encoding recipe, where space and time localities are both preserved on the same ground,
and find that it enhances the signal, which may be particularly significant when working with partial and/or
corrupted data, as is often the case in real biological experiments.
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I. INTRODUCTION

Statistical physics and information theory have a long
history of cross-fertilization [1], with both disciplines based
on a key concept: a quantitative statistical measure of or-
der [2,3]. For physical systems both in and out of equilibrium,
such a measure is the starting point for a general theory of
phase transitions, and it is a prerequisite for the study of
response to external perturbations [4]. The statistical notion
of entropy—the fundamental link between thermodynamics
and equilibrium statistical mechanics—is the main inspiration
for the central concept of information theory, the Shannon
entropy [5]. More recently, information theoretic ideas have
proven useful in the study of physical many-body systems, for
example, to obtain good estimates for critical temperatures in
equilibrium spin systems [6,7], to describe entropy production
in the context of stochastic thermodynamics [8,9], and to
obtain accurate estimates of the entropy in both equilibrium
and nonequilibrium systems [10,11].

In this paper, we seek a method to measure order in some
nonequilibrium flocking models, with an eye to eventually
analyzing observational data on living systems. In particular,
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we propose an analysis which treats ordering in space and
time on an equal footing. We argue that by analyzing the
temporal development of spatial patterns together, we can
obtain information in a way that is robust enough to survive
the inevitable noise present in collections of living objects.

Our approach is based on a recently proposed information-
based measure of order for out-of-equilibrium systems [10].
This proposal, called computable information density (CID),
relates to the compression rate measured by lossless com-
pression algorithms [12,13]. CID was shown to give clear
signatures of important transitions in the systems studied,
which included several absorbing state models [14] as well
as an active matter model, repulsive active Brownian particles
(ABPs), where motility-induced phase separation appears at
large enough concentrations [15]. We note that these models
lack first-principles Hamiltonians, which makes this quantifi-
cation of order even more compelling.

In particular, we compress a sequence s of L bits by using
a universal lossless compression algorithm (such as one of the
Lempel-Ziv algorithms) [16,17] and define the CID of s as

CID(s) ≡ L(s)

L
, (1)

where L(s) is the total binary code length of the compressed
sequence. We note that although we are using the term
“sequence,” we are not restricted to one-dimensional (1D)
strings: Microstates in any dimension may be compressed
by appropriate procedures, as discussed later. For equilibrium
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systems, the CID gives a good approximation to the thermo-
dynamic entropy [10].

Here, we investigate the effectiveness of CID in flocking
models, a class of active matter known to exhibit a different
kind of order from ABPs. We introduce a “space-time” algo-
rithm based on CID which is sensitive enough to yield insight
even when it only uses strongly coarse-grained information
about the system, such as a binarized (empty vs occupied)
density field. Our main results are as follows:

(i) By compressing a proper coarse-grained representation
of the system that only considers occupied vs unoccupied re-
gions of space, we introduce a CID-derived observable (which
we indicate with the symbol Q) which is able to characterize
the amount of correlations in the system.

(ii) We observe that the behavior of Q correlates with the
different nontrivial ordering phenomena in flocking models
and that it detects multiple phases in the system.

(iii) We are able to improve the sensitivity of Q by proper
incorporation of temporal as well as spatial information in
the representation of the system, and in this way we capture
information about temporal correlations as well.

(iv) This increase in sensitivity allows us to measure impor-
tant features even when our data are substantially corrupted, a
condition typically encountered in data collected from actual
living systems.

In Sec. II we introduce the flocking model used to test
our approach, the two-dimensional Vicsek model, following
which we explain the encoding method we use to translate
its dynamical configurations into a binary string, and we then
define our order measure. In Sec. III we present results ob-
tained from numerical simulations. We draw our conclusions
in Sec. IV.

II. ENCODING DYNAMICAL CONFIGURATIONS

A. The Vicsek model

We consider here an archetypical model of collective be-
havior in biological systems, the Vicsek model (VM) [18],
which we study in two dimensions. The VM is an active
matter model in which each agent or particle moves at fixed
speed and updates its velocity orientation by imitating the
average velocity of its nearest neighbors. The first is a simple
self-propulsion mechanism, while the second is an alignment
mechanism inspired by classical ferromagnetic models with
continuous symmetry [19,20]. Such features lead to a general
continuous theory of flocking [21–24]. It is worth noting that
the interaction network (or connectivity matrix) depends on
time through the interparticle distances, which in turn depend
on the velocities; this closes a feedback loop between posi-
tions and velocities that drives the systems out of equilibrium.
When we add noise to the update rules, the VM displays a
transition between a high-noise disordered phase and a low-
noise ordered (or polarized) phase. Close to this transition,
nontrivial fluctuations emerge both in velocity and in density,
whose properties at finite size depend on the nature of the
noise and interaction [25,26].

More specifically, the model consists of a system of N
active particles, each moving with fixed speed v0 in a 2D
square box of area W × W with periodic boundary conditions.

At each time step the particles tend to align their direction of
motion with that of their neighbors, with some noise added
to make the dynamics stochastic. Let ri(t ) ≡ (xi(t ), yi(t )) and
vi(t ) ≡ (v0 cos θi(t ), v0 sin θi(t )) be the position and velocity,
respectively, of particle i at some time t and θi(t ) be its orien-
tation, and let Ni(t ) be the set of its neighbors in a circle of
radius R centered about the particle i (hence this is a metric
implementation of VM) and Vi(t ) ≡ ∑

j∈Ni (t ) v j (t )/|Ni(t )|
be the average velocity of the particles in the neighborhood
of i. In the original Vicsek implementation, each particle in
the system evolves according to the following update rules:

θi(t + 1) = �[Vi(t )] + η ξi(t ),

ri(t + 1) = ri(t ) + vi(t + 1),

where �[v] ≡ Arg(vx + ivy) is the angular coordinate of v,
ξi(t ) is a uniformly distributed random variable in [−π, π ],
and η ∈ [0, 1] is the noise strength: This is the case of intrinsic
(also called scalar) noise. In this paper we also study another
popular noise implementation for VM introduced in Ref. [27]:
extrinsic (also called vectorial) noise. For extrinsic noise, the
updating rule for θi is a little different:

θi(t + 1) = �

[
Vi(t ) + η

(
cos ξi(t )
sin ξi(t )

)]
.

Both types of noise generate a phase diagram characterized
by two critical noise values ηb < ηc which, finite-size effects
apart, depend on the density ρ of the system and the speed v0

of the particles.
When the noise intensity is large enough, η > ηc, a Vicsek

fluid stays in a fully disordered state with a spatially homo-
geneous density and a thermal-like distribution of particle
directions. By reducing the noise to η � ηc the rotational
symmetry is spontaneously broken, and the system exhibits
collective motion: A clear polarization transition appears
for the velocities. This is accompanied by strong modifica-
tions of the density field, similar to microphase separation
with traveling band formation in the noise interval [ηb, ηc].
When the noise is further reduced to η < ηb, the bands
disappear, replaced by a polarized state whose density is spa-
tially homogeneous but possessing giant fluctuations [28,29].
The presence of microphase separation implies a first-order
transition, but there is a difference between the two kinds
of noise: At finite size W , sharp transitions for extrinsic
noise and smoother transitions for intrinsic noise are usually
found [30,31]. Basically, in the case of the intrinsic noise
model, the traveling bands are less clear and defined, though
they become more and more evident as the size of the sys-
tem increases, and the transition is said to be weakly first
order. The extrinsic noise, on the other hand, exhibits a band
structure even at moderate sizes, and the first-order nature of
the transition is more evident [27]. In this paper we show
how we can probe the phases of VM through a single ob-
servable related to the CID of a suitable coding of system
configurations and how the behavior of this observable is able
to distinguish both the noise implementations. In Fig. 1 we
show the polarization and its fluctuations for all the simulated
systems of this paper. The peak of the fluctuations localizes
the critical value ηc. Locating ηb is usually more complicated,
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FIG. 1. Mean 〈�〉 of the order parameter � = |∑i eiθi /N | and
its fluctuations σ 2 = 〈(� − 〈�〉)2〉 for several system sizes W , as a
function of noise strength η, for intrinsic (top) and extrinsic (bottom)
cases.

and the local density distribution and/or the hysteresis of the
order parameter are typically correlated to it [27,30].

B. Coarse graining

To implement the CID measurements, we first select a
space portion of size l < W , and we discretize this subset
by overlaying a regular square grid of M = m × m cells of
size b = l/m. We then observe the system evolution for a time
window of T steps. At each time t we assign the symbol “1”
to all the cells occupied by at least one particle and the symbol
“0” to empty ones: In this way we build a set of L = M × T
bits which stores the evolution of the coarse-grained density
field of the system over T steps. With a little abuse of no-
tation, we refer to this set of L bits which encodes the T -step
evolution of the system as the “configuration,’ and we use C to
indicate it and Cxyt to indicate its entries [Cxyt = 1 if there are
some particles in the cell at position (x, y) at time t ; Cxyt = 0
otherwise].

We note that we could have considered a richer alphabet,
e.g., based on combinations of local density and local (e.g.,
cell averaged) velocity, but there are good reasons for not
doing this. First, in real biological data, we typically have

direct access only to the positions of the agents; other degrees
of freedom (e.g., velocities) are obtained from the knowledge
of the positions. Additionally, since we simultaneously encode
T > 1 steps, we expect the velocity information to be present
implicitly.

C. Scanning: The Z-order curve

Since the typical compression programs operate on one-
dimensional strings of characters, we need to scan the
three-dimensional array C of L bits in order to produce a
one-dimensional sequence. Different scanning procedures ex-
ist, but in this paper we employ two procedures based on
the so-called Z-order or Morton-order mapping [32], which
is similar to Hilbert scanning. This class of mappings has
the advantages of preserving spatial locality in a reasonable
fashion and of working in arbitrary dimensions. We discuss
the Z-order mapping for the 2D case; generalization to higher
dimensions is immediate.

Let G be a matrix and Gxy be its entries (x and y are
integers; in our case, the entries Gxy take on the values 0 or
1, but this is not important for the scan). We wish to compose
a 1D string s = s1s2s3 · · · which are derived from G. The
Z-order algorithm does this as follows:

(1) Write the integer coordinates x and y in binary rep-
resentation, such that xi and yi are the ith digits in the
representations.

(2) Interleave the digits of the x and y to form a new
binary string x1y1x2y2x3y3 · · · (if the binary string for x or y
is shorter than the other, pad it with zeros): This is the binary
representation of some integer k.

(3) Set sk = Gxy.
The generalization to higher dimensions is straightforward:

The binary representations of the lattice site (x, y, z, . . .) are
interleaved in the same fashion as above. In Fig. 2 we show
how the Z-order curve works in two dimensions. We note
an ambiguity which we will return to later: For a grid of
dimension D, there are D! ways to obtain a Z-order curve, one
for each permutation of the cell coordinates. In this paper, the
configuration C includes a sequence of T > 1 different time
steps in the evolution of the system. We consider two main
ways to scan this three-dimensional matrix of L entries (see
Fig. 3):

Serialized time coding (STC). We scan the M cells of
each time step according to the 2D Z-order algorithm, and
then we concatenate the resultant 1D strings in a sequence
of L = T × M bits according to their time order. In this way,
spatial locality is preserved.

Interlaced time coding (ITC). We try to enhance preserva-
tion of time locality by scanning the entire space-time set of
M × T cells with the 3D Z-order algorithm and producing a
1D sequence of L bits.

Finally, regardless of how the sequence s was constructed,
we compute the CID by the Lempel-Ziv algorithm LZ77 [17]
as described in the Appendix, and we study the quantity Q(s)
defined by

Q(s) = 1 − CID(s)/CID(ssh),

where CID(ssh) is the CID of a random shuffle ssh of the
sequence s and CID(ssh) indicates an average over several
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FIG. 2. Procedure to get the Z value, i.e., the coordinate along
the Z-order curve which is a one-dimensional spanning of a mul-
tidimensional space, preserving locality. Each point has a Z value
which is obtained by interleaving the bits of the x coordinate with
the bits of the y coordinate. This, in two dimensions, can be done in
two different ways: Bits can be interleaved in the order xyxyxy · · ·
(x first) or in the order yxyxyx · · · (y first). The two possibilities are
illustrated for two different points, using colors (green and blue) to
make appreciable the choice of the interleaving order. One choice
gives us the solid curve; the other gives us the dashed curve. In the
example, the distance (along the Z curve) between the two points
depends on the choice of the order: It is 38 − 7 = 31 for x-first order
and 25 − 11 = 14 for y-first order.

such shuffled sequences. Q has the characteristic of an order
parameter: 0 � Q � 1 and, for asymptotically long strings,
Q � 0 indicates that the symbols are uncorrelated while Q >

0 indicates the presence of some order in the sequence. We
note that for STC there are two possible interleavings and
for ITC there are 3! = 6 interleavings. This means that the
Z curve does not span the space (or the space-time for the
ITC case) in an isotropic way. In order to handle this am-
biguity and improve the isotropy, we can average Q over
the two (for STC) or six (for ITC) possible curves obtained
by different interleavings of coordinates. So, if indicating by
US (C) and UI (C) the set of possible strings obtained from the
configuration C with STC and ITC schemas, respectively, we

FIG. 3. Comparing STC (red curve) and ITC (green curve)
schemes. STC simply places the evolving configurations one behind
the other after a two-dimensional Z order spanning over the cells of
a single time step. Differently, ITC interlaces bits of configurations
at different times following a three-dimensional Z-order curve. Note
that the numbers of 1s and 0s are identical and only the positions in
the output one-dimensional string are different.

define

QS (C) = 1

2

∑
s∈US (C)

Q(s), QI (C) = 1

6

∑
s∈UI (C)

Q(s).

It is useful to introduce the following quantities as well:

Q<
S,I (C) = min

s∈US,I (C)
Q(s), Q>

S,I (C) = max
s∈US,I (C)

Q(s).

We show below that the ITC schema is more sensitive to the
ordering than the STC schema, which we argue will play a
useful role in analyzing collective dynamics of living things.

III. RESULTS

In this section we show how the dynamical information
arises by an analysis of Q by comparing the ITC and STC
schemes on simulations of the 2D Vicsek model. For both
intrinsic and extrinsic types of noise, we focus on a typical
set of parameters, setting the interaction radius, density, and
speed to R = 1, ρ = 2, and v0 = 0.5, respectively. We employ
periodic boundary conditions, and we simulate the model for
different box sizes W , from W = 8 to W = 128 (so, in ac-
cordance with ρ = N/W 2, the number of particles N ranging
from 29 to 215) and for different noise strengths in 0 � η � 1.
We choose our observation window size l (that is, the space
subset which we analyze) to be smaller than the entire system
to avoid points which are near one another in space (because
of periodic boundary conditions) being far apart in the Z-order
curve: Since such issues arise only near the boundary, we
choose l = W/2. Once T and coding STC or ITC are set,
we indicate generically by Q(t ) the value of Q obtained by
encoding the configuration which arises from the time interval
[t, t + T ). We then consider the time series of Q by skipping T
steps (in order to avoid information overlap) between a value
of Q(t ) and the next one Q(t + T ). Finally, we time-average
〈Q〉 over K > 103 configurations, starting to collect the data
after waiting for the system to reach a stationary steady state
(t > t0 � 104 for the largest size). Thus

〈Q〉 = 1

K

K∑
k=1

Q(t0 + kT ).

A. Setting the discretization scale b

We first study the effect of the cell size b at T = 1 (for
which there is no difference between STC and ITC). As seen
in Fig. 4, there is an optimal value at b = 1 for most of the
choices of the noise intensity. This result needs some discus-
sion. Intuitively, one could expect that the optimal value is
related to the correlation length in the system. However, the
perspective offered by the CID is opposite: A larger or smaller
correlation length implies better or worse compression (higher
or lower Q). b only sets the encoding resolution, its optimal
value representing the compromise between too coarse and
too refined observation. Our understanding is that, at a given
noise amplitude η, the maximum of Q is found when b is
of the order of the size of the smallest domains which move
together. In fact, if we choose a higher value, we lose details
and then information; if we choose a smaller value, we do not
add information (neighboring cells hosting the same domain
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FIG. 4. The trend of Q for T = 1 by varying the cell size b. For
finite-size systems, Q tends to trivial value 0 for b → 0 (the few filled
cells are randomly distributed) and b → l (each cell is filled with a
1); consequently, since Q � 0, there must be a maximum for some
intermediate value, in this case, b = 1. (Data are for VM simulations
with intrinsic noise; parameters are ρ = 2, W = 128, and l = 64.)

behave similarly and are redundant), but we add randomness
to the shuffled sequences on which we normalize the CID:
Both cases lead to a smaller Q. The size of these minimal
domains is of the order of the interaction radius (which is
R = 1), and such domains are present for any value of noise
strength, explaining the uniformity of the optimal b seen in
Fig. 4. We confirmed this hypothesis by further analysis with
R = 1 at different speed and density values, for which we
found the optimal cell size b = 1 again. An attempt to esti-
mate the correlation length by looking at how compression
factor scales as a function of coarse graining can be found
in Ref. [11]. Here, since we want to study the effect of other
parameters, in particular, the effect of the time interlacing, we
fix b = 1 in the remainder of this paper.

B. Dependence on the time window T and on the time encoding

In Fig. 5(a) we plot the average 〈Q〉 as a function of the
noise η for the ITC and STC protocols for the model with in-
trinsic noise and different time-window lengths T . Although
the curves all have the same general shape, for T > 1 the
values given by the ITC protocol are considerably larger than
those coming from the STC one. A larger Q implies better
compression, i.e., a smarter discovery of correlations in the
strings. The ITC protocol also exhibits a wider dynamic range
of Q (maximum value − minimum value) when parameters,
such as the interleaving direction (Z-order permutation) and,
most importantly, η, are changed. Finally, the ITC protocol
is more sensitive to T , suggesting that it takes advantage of
temporal correlations. In the following we analyze all these
aspects in detail.

In Fig. 5(b), we compare step by step the “worst” result
for ITC—the minimum value Q<

I over the six permutations—
with the “best” result for STC—the maximum value Q>

S over
the two permutations—and we find a gap 
 = Q<

I − Q>
S be-

tween the two encoding protocols which is always positive:
This shows that the ITC protocol extracts more correlations

FIG. 5. (a) Q computed by the simple time-concatenation STC
scheme (red curves) and by the Z order in space-time with the
ITC scheme (green curves) compared with Q computed on a single
configuration (black curve T = 1). Polarization � is the dashed gray
line. The ITC scheme gives a Q higher than STC already at T = 2,
and its Q increases significantly faster than STC as T → 64 (insets).
(b) Evolution of Q variability range due to permutations. We show
that STC and ITC schemes produce, not only on average but also
step by step, Q values that are always well separated. (Data are for
VM simulations with intrinsic noise; parameters are N = 32 768,
W = 128, l = 64, and T = 64.)

than STC, since 
 is larger than statistical fluctuations. When
T is increased, the shape of the curve Q vs η remains similar,
but the values of Q obtained with the STC scheme increase
slightly (mainly because of the larger statistics of substrings),
while a significant increase in Q is obtained when using the
ITC protocol [insets in Fig. 5(a)]. For instance, the ITC with
T = 2 is everywhere larger than STC with T = 64, indicat-
ing a vastly greater sensitivity, even when η → 1, where the
particles are evenly distributed with no polarization. It is not
difficult to guess why. The STC scheme preserves only space
locality, so at large noise values, where there are no spatial
correlations, it gives Q � 0. In contrast, the ITC scheme pre-
serves space and time locality and therefore exploits temporal
correlations, resulting in Q > 0 even at high noise.

This is also appreciated by studying how Q changes when
the distance 
t between successive times in a sequence of
T configurations is increased (Fig. 6). This analysis shows
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FIG. 6. Consequence for Q when the sequences of T length are
built by skipping 
t time steps. The ITC scheme shows a decay of
Q with varying 
t that, as we expect, slows down as the transition
is approached. Differently, the STC scheme (inset) does not show
meaningful information. (Data are for VM simulations with intrinsic
noise; parameters are N = 32 768, W = 128, l = 64, and T = 64.)

a striking difference between STC and ITC. STC is not
particularly sensitive to 
t : It treats all configurations as in-
dependent, without respect to their proximity in time. ITC,
on the other hand, displays a smooth relaxation towards an
asymptotic value for large 
t . From these results we conclude
that temporal interlacing (ITC) has greater sensitivity about
dynamics, information that is more challenging for the STC
scheme to reveal.

C. Probing the phase diagram with Q

In this section we give details about how Q describes the
full complex phase diagram of the VM. We consider both
variants of the VM, with intrinsic and extrinsic noise, in order
to investigate the sensitivity of Q to the known differences
between these two kinds of noise. Since we wish to analyze
the effect of system size W and since a cubic space-time
grid with power-of-2 size enables some optimization which
allows us to speed up simulation, encoding, and analysis, we
increase T linearly with W (T = W/2 = 2k). For the larger
size we simulated, we located the critical points ηb and ηc

by looking by eye at the traveling band formation in running
simulations, as seen in Fig. 7, where some representative
simulation screenshots for selected values of η are shown.
We estimate ηb � 0.34 and ηc � 0.48 for intrinsic noise and
ηb � 0.56 and ηc � 0.62 for extrinsic noise. The traveling
band structures that accompany the polarization transition at
ηc lose coherence at smaller values of η ∼ ηb, leading the
density field to become homogeneous. At smaller values of
η the density field develops strong disordered fluctuations.
Figure 7 provides a detailed account of how Q computed with
the ITC schema correlates with this behavior and of how it
reveals more order than the STC schema.

We note that the inflection points in the Q vs η curves (or
the maxima of its derivative) are able to locate the critical
values ηc and ηb. Intrinsic noise is known to bear the signature
of a smooth flocking transition [31], while extrinsic noise
exhibits a sharper transition at a higher value of η [27].

Both behaviors are well reproduced by the Q vs η curve:
In the intrinsic noise case, Q has a smooth variation close to
the known value of ηc (see also the dashed curve reproducing

the polarization order parameter), while in the extrinsic noise
case Q has a rapid variation near ηc (which is larger). The
variation of Q in the vicinity of the transitions is made clearer
by looking at the derivative |dQ/dη|, shown in the insets in
the left panels of Fig. 7. Remarkably, Q signals not only the
polarization transition but also the other crossover present in
the VM phenomenology. In particular, Q reaches a local max-
imum at the point marked by η∗. The fastest decrease (when
reducing η) is marked by a second peak in |dQ/dη|, at a noise
value ηb. This decrease is associated with the aforementioned
loss of order of the density field. For even smaller values of
η < ηb we observe a final increase in Q with decreasing η.
This is due both to the further increase in polarization and
to the appearance of giant fluctuations, a well-studied phe-
nomenon in the VM at low values of noise [29]. Such strong
inhomogeneities of the density field appear as large areas with
correlated values of the occupation field, contributing to an
increase in Q. We observe that the steepness of the variation
of Q(η) in the proximity of ηc is stronger for larger systems,
perhaps being related to the sharpness of bands, which are
known to be more visible in large systems and with extrinsic
noise. As can be seen in Fig. 5, these features are not a
prerogative of ITC only: Albeit with a slightly weaker signal,
STC and T = 1 analysis (from which no velocity information
can be inferred) both lead to similar features. In the case of
the VM, this is not surprising, since in this model, when the
velocities start to align, there is a simultaneous ordering in
the density field. This means that the spatial correlations of
density fluctuations contain information about the state of the
system and, therefore, preserving space locality only, as STC
schema and T = 1 schema do, is enough to discriminate the
phase of the system.

In the right panels of Fig. 7 we see the difference between
ITC and STC as a function of η. The difference increases with
N at any noise value η, with a few exceptions (we recall that
at low values of noise the large correlations in the system are
associated with large fluctuations). In particular, the difference
between STC and ITC shows a rapid increase when crossing
from above the polarization transition ηc: This fact is strictly
related to the ITC’s ability to retrieve information about the
time correlations and to the typical slowing-down phenomena
close to phase transitions. In Fig. 6 there is a clue that supports
this hypothesis: The characteristic relaxation times of Q vs

T curves grow when η is close to critical values ηc � 0.48
and ηb � 0.34 suggesting precisely a power-law rather than
an exponential time decay. Note that the rapid increase in the
difference between ITC and STC when crossing from above
the polarization transition ηc makes the ITC more sensitive
in marking the polarization transition, as it implies a steeper
variation of Q(η) at that point.

D. Coping with corrupted data

The VM is a numerical model that produces trajectories
for which identity, position, and velocity of each particle are
exactly known at each time step. In real experiments on col-
lective biological systems, reconstructed trajectories (both in
two and three dimensions) may become corrupted in several
possible ways, especially when analyzing large groups. For
example, in some cases the trajectories of certain individuals
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FIG. 7. Results obtained with VM simulations, both with intrinsic (top) and extrinsic (bottom) noise. Left: 〈Q〉 vs η computed with the
ITC scheme at increasing system size W and time length T ; dashed black curves refer to polarization � computed for W = 128. The inset
shows the two peaks of |dQ/dη| for W = 128 located at ηb and ηc (and the local maximum at η∗) which delimit the phase of traveling bands.
The density structures are shown in the strips below. We estimate ηc � 0.48 and ηb � 0.34 for intrinsic noise and ηc � 0.62 and ηb � 0.56 for
extrinsic noise. Right: Differences compared with the STC scheme with varying noise strength.

are temporarily lost, so that their positions are missing for
several time steps. Thus some trajectories are interrupted,
meaning that at each time step we lack information about a
certain fraction of objects. This uncertainty fraction typically
grows with the system density [33,34].

Here, we examine whether our analysis is sensitive enough
to show data on ordering in the presence of data corruption,
by simulating the interruption of the trajectories by a simple
two-state Markov process. Such a process has two parameters
that modulate the degree of data corruption: the fraction of
missing individuals μ and the average length of a trajectory
λ (see the Appendix for further details). Figure 8 shows that
both STC and ITC are able to detect the transition even in the
presence of strong data corruption. Since the corruption spoils
correlations, this robustness of Q is nontrivial. An important
point is that, with increasing corruption of data, ITC copes
significantly better than STC. Not only is Q always larger

for ITC than for STC, but their difference increases with
increasing data corruption [Fig. 8(b)], apart from a few cases
at small values of μ. This indicates that for real data sets, ITC
will be more robust than STC; the reason seems to be that ITC
better exploits time correlations to recover the information
which is lost because of “vanished” particles.

IV. CONCLUSIONS

We have studied a measure based on data compression and
applied it to the Vicsek model, a nonequilibrium active system
which describes collective behavior in biological systems.
Motivated by the desire to establish a framework for the anal-
ysis of actual data on collections of living things, we adopted
a crude encoding method, based on a binary coarse graining
of the positional information. We do not directly feed the ve-
locity information to the encoding, despite the crucial role of
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FIG. 8. (a) The effect of data corruption on 〈Q〉 vs η. (b) Depen-
dence on μ of the difference between 〈QI 〉 and 〈QS〉 for some value of
noise strength η. (Data are for VM simulations with extrinsic noise;
parameters are N = 32 768, W = 128, l = 64, and T = 64.)

velocity alignment in the VM. Numerical results show that the
CID is able to capture the order-disorder transition normally
described by the velocity order parameter, demonstrating that
it can exploit the density-velocity coupling present in the VM
and in many nonequilibrium systems. This result is promising
for future analysis of real data, as the positional information
is easily obtained in experiments.

One could, in principle, explore other, more refined, ways
of encoding the physical information, by changing, and ex-
panding, the alphabet of the compressed string according to
other local properties of the system (including velocities).
However, we have seen that a larger alphabet makes the space
of possible strings larger: Therefore—at fixed string length
L—it reduces the ability of the compressing scheme to exploit
correlations. Of course, a larger alphabet also makes strings
longer (at constant configuration size), which implies longer
time for CID computation: In our implementation, such a
time increases slightly more slowly than linearly with L (and
therefore with the number of bits needed to encode additional
features). Given the results obtained with our simple encod-
ing method, we deem that more complex encodings are not
necessary in general.

Extending our approach to systems in three (or more)
dimensions is straightforward, since the Z-ordering curve

has an obvious generalization in any dimension (and it is
usually faster and simpler to implement than the Hilbert
curve). The method is not constrained to regular cubic lattices
with T = m = 2n (we have chosen to do so just to simplify
computational work). In fact, regardless of the size of the
observation window and of grid features, once the cells have
been defined, it is sufficient to sort them according to their
Z value. Effects of the aspect ratio of the simulation box are
taken into account by averaging on the permutations of the
coordinates, as illustrated in this paper.

Our results show that preserving locality in both space and
time in the encoding (ITC), rather than in space only (STC),
is important. ITC always extracts more information than STC,
and most importantly, the difference in the performance is
robust (or even increases) in the presence of corruption of the
data sets. This result is particularly important if one wants to
apply the method to actual biological data. A free parameter
of this procedure is the size of the coarse-graining cells b:
Here, we have calibrated it looking for the value giving max-
imum compression (larger CID), which was associated with
the interaction radius and therefore did not vary appreciably
when changing the other parameters. We believe that it should
behave similarly in other applications.

We conclude by describing some future directions of our
work. The use of compression-based tools is particularly
promising for the study of the response to perturbations in
collective biological systems. The fluctuation-dissipation the-
orem (FDT), connecting the unperturbed correlations of a
given observable to the linear response of the system to a
given small external perturbation, is particularly simple in
equilibrium, where the observables involved are dictated by
the Hamiltonian. In the case of flocks, swarms, and other
biological systems, one has to exploit one of the many recipes
for nonequilibrium generalization of the FDT [4]. In all such
recipes, one needs to know which of the relevant variables
are conjugated to the perturbation; however, in the case of
biological experiments, it is not at all clear which variables
of the systems are perturbed in the presence of a given ex-
ternal stimulus. Recent advances in nonequilibrium statistical
physics provide a possible way out: For nonequilibrium steady
states the response to perturbations can always be expressed
in terms of correlations involving observables conjugate with
respect to a specific observable, the “stochastic entropy” [35].
We conjecture that the observable Q investigated here is
closely related to it. Our analysis, in particular, shows that Q
is coupled to many relevant degrees of freedom in the system
and therefore is a promising candidate for a general approach
to response in biological systems.
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APPENDIX

1. The LZ77 ALGORITHM

We here illustrate how the LZ77 algorithm works and derive
the corresponding definition for the CID, with an example:
We try to encode a sequence of characters in a list of “longest
previous factors” (LPFs). We represent a LPF by a pair of inte-
gers (p, l ) which are the “instructions” to retrieve the original
sequence: “Print l symbols starting from the pth character
already written; if l = 0, just print p directly.” To decode,
we must go through the list of LPFs in order and, for each of
them, follow the instructions.

Consider the binary sequence of length L = 16

0101100111001110,

and read it from left to right. At the beginning, no characters
have been printed yet so, surely, the first two LPFs are (“0′′, 0)
and (‘‘1′′, 0) (both have l = 0; in this case, p is the character
to be printed, and we emphasize it using quotation marks).
Next we have a substring “01” that we have already met: The
LPF is then (1,2) (copy two characters starting from position
1). The next substring already met is “10,” and it is encoded
by LPF (2,2), followed by (3,3) to encode “011.” Finally, we
see that the remaining substring “1001110” is obtained by
copying seven characters starting from position 5, so the last
LSF is (5,7). It does not matter whether the sequence currently
available is shorter than seven characters and incomplete, as
the full subsequence becomes available during printing. The
number of bits L needed to encode this list of C = 6 LPFs can
be estimated by the following argument. Let (pi, li ) be the ith
LPF and bi � log2 pi + log2 li be the number of bits needed
to encode it: In this way the length of the original sequence L
and the compressed binary length L are given by

L �
C∑

i=1

li, L =
C∑

i=1

bi.

Since pi < L, we have bi � (log2 L + log2 li ), and L must be
bounded by

L � C log2L +
C∑

i=1

log2li.

Now, we use Jensen’s inequality for concave functions

C∑
i=1

log2li � C log2

(
1

C

C∑
i=1

li

)
= C log2

L

C
.

After simple algebraic manipulation, we obtain an expression
for the CID as in Ref. [10]

L
L

� C log2C + 2C log2(L/C)

L
.

The CID of our example (C = 6, L = 16) is 2.03. For ef-
fective compression we must consider longer sequences; for
example, consider an L = 128 string obtained by replicating
the sequence considered above (L = 16) eight times. In this
case we must add one more LPF, (1,112), so, since C = 7 and
L = 128, we find CID � 0.61, and we have almost halved the
number of bits needed to represent the sequence.

2. Data corruption

In order to mimic real data corruption or degradation,
we proceed as follows. We associate with each particle i a
Boolean random variable bi ∈ {0, 1} which evolves under the
action of a two-state Markov chain with transition probability
P(b → b′) = Pbb′ :

p = P10 = 1 − P11, q = P01 = 1 − P00.

At each simulation step we apply the rules of this Markov
process to evolve bi stochastically. In this way, we are able
to modulate the degree of data corruption by tuning two pa-
rameters: (i) the fraction of missing individuals μ and (ii) the
average length of a trajectory, λ. In particular, we consider or
ignore particle i of the data set according to the value of bi:
When bi = 0, the particle i is removed from the data set until
bi returns to 1. It is easy to prove that the invariant measure ρb

(ρ0 = μ) and the typical length (the average life span) λ of a
trajectory depend on p and q in the following way:

μ = ρ0 = 1 − ρ1 = p

p + q
, λ =

∑∞
l=1 lPl

11∑∞
l=0 Pl

11

= 1 − p

p
.

Then, by setting p and q to appropriate values

p = 1

1 + λ
, q = 1 − μ

μ
p

and by starting with a configuration of {bi}i=1,N already in
equilibrium according to the invariant measure

∑
i bi/N � ρ1,

we can simulate data corruption by varying μ and λ.
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