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Computable information density (CID), the ratio of the length of a losslessly compressed data file to that
of the uncompressed file, is a measure of order and correlation in both equilibrium and nonequilibrium
systems. Here we show that correlation lengths can be obtained by decimation, thinning a configuration by
sampling data at increasing intervals and recalculating the CID. When the sampling interval is larger than
the system’s correlation length, the data becomes incompressible. The correlation length and its critical
exponents are thus accessible with no a priori knowledge of an order parameter or even the nature of the
ordering. The correlation length measured in this way agrees well with that computed from the decay of
two-point correlation functions g2ðrÞ when they exist. But the CID reveals the correlation length and its
scaling even when g2ðrÞ has no structure, as we demonstrate by “cloaking” the data with a Rudin-Shapiro
sequence.
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Physics, and indeed science in general, is a search to find
and quantify correlations and order in nature. In many cases
this organization is evident and quantifiable in terms of an
order parameter that is identified with a broken symmetry.
Such symmetry breaking is often associated with a phase
transition at which the order parameter becomes finite,
and a length scale for the persistence of the order which
diverges as one approaches the transition. There are, how-
ever, systems in nature whose order we do not yet under-
stand or for which we cannot define an order parameter in
the conventional sense. Even in such cases, we may
reasonably expect that there exist some as yet unidentified
correlations, with associated length scales which may or
may not diverge.
The basic idea we wish to exploit is the intimate

connection between order and information: it takes less
information to completely describe a system with cor-
relations than an uncorrelated one. The basis for the
quantification of these ideas can be found in information
theory [1], in particular the Shannon entropy [2] and the
Kolmogorov complexity [3,4]. In recent work [5] we have
introduced a quantitative measure, the computable infor-
mation density (CID), K≡ LðxÞ=L, that is the binary code
length, LðxÞ, of a losslessly compressed file x (such as
the microstate of a many-body system) divided by the
uncompressed length L (the number of degrees of freedom)
of x [6], which is closely related to the Shannon and
Kolmogorov measures, and which is an excellent approx-
imant of the thermodynamic entropy, S, for equilibrium
systems. In what follows we estimate the CID using the
unrestricted Lempel-Ziv string matching algorithm (LZ77)
[7,8], a universal (i.e., requires no a priori knowledge of

the nature of the ensemble) and asymptotically optimal
code (i.e., limL→∞K ¼ S) [1,5]. CID reveals the nature of
phase transitions (first or second order), the position of
critical points, and the exponent of critical slowing down,
for both equilibrium and nonequilibrium phase transitions.
Here we wish to explore whether CID can be used to
determine correlation lengths for such systems [9].
The standard method for computing the correlation

length ξ of a system is to calculate some correlation
function, typically two-point, and see how it decays with
distance. This presupposes that the order and proper
correlation function is known. In this Letter, we propose
a method that does not require this knowledge, which is
based on the fundamental idea that correlations reduce the
CID of a system.
If a system consists of uncorrelated elements, the CID

takes its maximum value. To exploit this, we sample a
system on various length scales Δ by culling out degrees
of freedom on smaller scales. In Figs. 1(a) and 1(b) we
consider a 1D model of randomly placed hard rods of
length l ¼ 4, while in Figs. 1(c)–1(d) we have a 1D Ising
model [10] at finite temperature and zero applied magnetic
field. The diagrams in Figs. 1(a) and 1(c) show a respective
configuration from each of the models, which we sample
on every fourth site (Δ ¼ 4). If Δ < ξ, the remaining
degrees of freedom still show correlations, albeit weakened,
but if Δ > ξ, all correlations are lost and the CID attains its
maximal value. In the simplest cases, e.g., for the 1D hard-
rod model, to estimate ξwe can simply look for the smallest
value of Δ where the CID reaches its maximum. However,
this is not always adequate, e.g., in the 1D Ising model the
CID approaches its maximum exponentially, so we find that
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in general it is better to study the way that the CID scales
with Δ by collapsing the data. This procedure has the
advantage of being independent of the system being
analyzed.
In particular, we wish to study the quantity [25]

QðΔÞ≡ 1 −
KðΔÞ

KshufðΔÞ
; ð1Þ

where we denoted the CID as K, and the subscript “shuf”
refers to a configuration obtained by randomly shuffling
all its degrees of freedom. Because a randomly shuffled
configuration has no correlations, KshufðΔÞ ≥ KðΔÞ, and
0 ≤ Q ≤ 1.
The 1D hard-rod system consists of Nr rods, each

occupying l contiguous sites, randomly distributed on a
lattice of length L sites. The fraction of occupied sites is
ρ ¼ Nrl=L. Configurations of the system are represented
by strings fnjg, where j ¼ 1; 2;…; L and nj ¼ 1 if site j is
occupied by a rod element, and nj ¼ 0 if it is not. The
trivial correlation length is l. Can we discover this by
decimating configurations, computing their CID, and esti-
mating ξCID from the value of Δ at which QðΔ;lÞ → 0 for
different values of l?
The decimated configurations are obtained by retain-

ing the occupancies nj·Δ (with j ¼ 1; 2;…; L=Δ) of a

configuration, deleting all the others, and then rescaling
the system by a factor Δ. In Fig. 1(b) we plot QðΔÞ for
several values of l, with ξCID vs l shown in the inset, along
with the values of ξg2 obtained by finding the minimum of
the two-point correlation function g2ðrÞ of the undecimated
configurations (see the Supplemental Material [11]). Both
correlation lengths are close in value to l but differ
numerically by a small factor. The data collapse, along
with the exact result, showing that Qðρ;Δ;lÞ → 0 linearly
with Δ − l as Δ → l, are given in the Supplemental
Material [11].
We next consider the equilibrium 1D Ising model, which

has a transition at T ¼ 0. Both the entropy S and ξ may be
solved for exactly [26], and give [27]

QðΔ; ξÞ ¼ e−Δ=ξ coth−1ðeΔ=ξÞ þ 1
2
log ð1 − e−2Δ=ξÞ

logð2Þ : ð2Þ

Here, Q → 0 exponentially as Q ∼ e−2Δ=ξ, making an
extrapolation inadequate to determine ξCID. Rather, we
generate equilibrium spin configurations for different
temperatures, decimate these configurations, calculate the
CID to find QðΔÞ, and then collapse them to a universal
curve [inset of Fig. 1(d)]. The collapse indicates that there
is a single length scale ξ in the problem and yields its
temperature dependence. An exponential fit to a single

FIG. 1. Diagrams depict (a) 1D hard-rods of length l ¼ 4 and (c) 1D Ising configurations, their shuffled counterparts, and the result of
decimation when the sampling interval is Δ ¼ 4. (b) 1D hard rods, with lengths l ¼ 2i (1 ≤ i ≤ 6), randomly distributed on a grid of
length L ¼ 216þi, at fixed density ρ≡ Nrl=L ¼ 1=4. Upon decimation at intervals Δ > l, the configurations reduce to a random
sequence. The main panel shows QðΔ;lÞ, dashed lines are exact solution to leading order (see Eq. S5 in the Supplemental Material
[11]). Inset shows ξ as computed from QðΔÞ and g2ðrÞ taking ξ to be the value where QðξÞ ¼ 0.025 and where g2ðξÞ is a its minimum
(see the Supplemental Material [11]). (d) 1D Ising model of size L ¼ 220 simulated by Wolff algorithm [24]. We performed the same
analysis as for panel a but extracted ξ by fitting the curves to exponential functions of the form g2ðrÞ ¼ g2ð0Þ expð−r=ξÞ and
QðΔÞ ¼ Qð1Þ exp½−ðΔ − 1Þ=ξ�. Data were averaged over 200 equilibrium configurations. The black dashed lines show the theoretical
scaling for ξ with T. Inset shows the collapsed QðΔ; TÞ, along with the analytical solution Eq. (1) (red line).
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curve Q vs Δ=ξ then gives the value of ξCID. ξCIDðTÞ and
ξg2ðTÞ are shown in Fig. 1(d); both show the same T
dependence as the analytic ξðTÞ.
Results in 2D for the q-state Potts models (2 ≤ q ≤ 8)

[28,29] are shown in the Supplemental Material [11]. For
q ¼ 2, this is the Ising model. Figure 2 (inset) shows the
collapse of Q obtained by scaling the axes; this allows us
to determine the critical exponent to be ν ¼ 1, where
ξðTÞ ∝ ðT − TcÞ−ν. Fitting QðΔ; TÞ at a single temperature
gives us the numerical value of ξCID, which is plotted
alongside the value obtained from g2ðrÞ in the main panel
of Fig. 2. Notice that while decimating by Δ correctly
yields configurations with correlation length ξ=Δ, these
are not equilibrium configurations with the same correla-
tion length. This can be seen for instance from the fact
that magnetization is invariant under decimation. In the
Supplemental Material [11], we consider an alternative
blocking transformation, known as “majority rule” [30],
that yields valid equilibrium configurations and for which
we can derive an exact expression for 2D Ising analogous to
Eq. (2), and verify that there is good agreement between
theory and numerical results in 2D.
We now consider the conserved lattice gas (CLG), a

dynamical nonequilibrium lattice model of the conserved
directed percolation class [31]. In the CLG [as illustrated in
Fig. 3(a)] an occupied site is considered “active” if one of
the nearest neighbors is also occupied (orange circles).
Sites have a maximum occupancy of 1 particle. At each
time step, active sites are emptied stochastically by moving
the particle to one of the empty neighboring sites (black
arrows). The model has a continuous phase transition from

a low density absorbing phase (where all sites are inactive)
to a high density active phase where the dynamics persist
forever. Configurations at the critical point are hyper-
uniform [32,33]. In 1D the critical density ρc ¼ 1=2
corresponds to a periodic arrangement where every other
site is occupied (i.e., 101010;…). In Fig. 3(b) we show
ξðρÞ as obtained both from CID and g2ðrÞ, as well as the
scaling collapse of QðΔ; ρÞ for different densities (inset).
We find that ξðρÞ diverges with the exponent ν ¼ 2 for both
measures as ρ → ρc.
We now want to see whether CID decimation can

measure correlation lengths in systems with no two-point
correlations. To this end, we will “cloak” strings in two
ways that destroy their two-point correlations. To do this,
we multiply 1D Ising configurations by (i) a random
Bernoulli sequence (RBS) of equal numbers of �1, and
(ii) the deterministic Rudin-Shapiro sequence [34,35] (RS).
Notice that this cloaking is exactly equivalent to studying
two variants of the “Mattis glass,”with RS and RBS ground
states [36]. Both of these sequences have g2ðj; kÞ ¼ δjk, but
while for RS the Kolmogorov complexity and CID tend to
zero as the sequence length increases, they are maximal for
RBS [5].
Multiplying a sequence with structure in its g2ðrÞ [or,

equivalently, its structure factor SðkÞ] by RBS will produce

FIG. 2. 2D Ising model of size L ¼ 210 × 210 simulated by
Wolff algorithm [24]. Correlation lengths ξ extracted by fitting
the pair-correlation function to g2ðrÞ ¼ g2ð0Þ expð−r=ξÞ=rη
and QðΔÞ ¼ Qð1Þ exp½−ðΔ − 1Þ=ξ�=Δθ. We find η ≈ 1=4 and
θ ≈ 1=2. The black dashed lines show the theoretical scaling
ξ ∼ jT − Tcj=Tc with Tc ≈ 1.1345. Data were averaged over
200 equilibrium configurations. Inset shows the collapse of the
scaled QðΔ; TÞ.

FIG. 3. 1D conserved lattice gas. (a) At time t ¼ 0 the system is
in an active randomly sampled state (active sites in orange) and
the possible moves prescribed by the dynamics are indicated by
the arrows. When the density ρ ≤ ρc the system relaxes to an
absorbing state with no active sites. (b) Correlation lengths ξ for a
system of size L ¼ 217 starting from randomly sampled states,
extracted fromQðΔÞ and jg2ðrÞj by taking ξ to be the value where
QðξÞ ¼ 0.05 and jg2ðξÞj ¼ 0.05. The black dashed lines show the
fitted scaling ξ ∼ jðρ − ρcÞ=ρcj−2, where ρc ¼ 0.5. Inset shows
the collapse of the scaled QðΔ; ρÞ. Data were averaged over 15
independently generated configurations.
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a maximally random sequence with g2ðrÞ ¼ 0 for r ≠ 0
[and SðkÞ ¼ 1 [37] ]. Moreover, this will increase its
CID [38], and cause all information about the original
configuration to be lost (unless decoded by the identical
random sequence). A similar multiplication by RS will
remove all two-point correlations, also giving g2ðrÞ ¼ 0
(for r ≠ 0) and SðkÞ ¼ 1, but will not appreciably change
the Kolmogorov complexity of the original, since the RS
itself has negligible Kolmogorov complexity. In this sense,
“cloaking” by RS makes the sequence look random as far
as g2ðrÞ and SðkÞ are concerned, while still retaining all the
original information and order, although in a different form.
We therefore expect that we should be able to recover the
correlation length of the original, uncloaked system.
In Fig. 4(a) (inset) we show the CID for 1D Ising

configurations at different temperatures, and for the same
configurations cloaked by RS and by RBS. RBS-cloaked
1D Ising has a flat CID ¼ 1 indicating a correlationless,
maximally disordered system, but RS-cloaked 1D Ising
retains much of its correlations. In the main panel of
Fig. 4(a) we graph SðkÞ for 1D Ising configurations, this
shows increased correlations as T is lowered. Multiplying
any configuration by RBS or RS gives SðkÞ ¼ 1. We now
perform the decimation procedure to determine the corre-
lation length of the cloaked configurations. In Fig. 4(b) we
plot the correlation lengths for the RS-cloaked configura-
tions as determined from CID decimation and from g2ðrÞ,
vs ξCID for the uncloaked 1D Ising configurations. For
random cloaking, all information is lost, with no tempera-
ture dependence. However, for RS cloaking, although

ξðRSÞg2 ðrÞ ¼ 0, ξðRSÞCID agrees well with the correlation length
of the uncloaked 1D Ising system. Figure 4(b) shows that
similar conclusions hold also for the hard rod and 1D CLG
systems when cloaked by RS (see also the Supplemental
Material [11]).
We note that RBS cloaking is analogous to the situation

encountered in the analysis of static configurations of a
square-lattice spin glass with random quenched disorder. In
this case, without knowledge of the random couplings, the
CID (or any other static estimator) would not be able to
detect the order of an individual configuration because
(like for RBS) individual configurations exhibit no corre-
lations (and therefore are not compressible). It might,
however, be possible to extract a correlation length by CID
when considering the dynamics of the systems, viz. whole
trajectories rather than individual configurations. We also
argue that because structural glasses lack quenched dis-
order [39], the CID may be an effective tool for the analysis
of the glass transition, e.g., in soft sphere systems, given a
sufficiently accurate CID estimator for continuum two- and
three-dimensional systems.
CID decimation presents a simple and general method

for finding the correlation length of equilibrium and non-
equilibrium systems, or in fact of any temporal or spatial
array (e.g., a sequence or an image), with no a priori
knowledge of a possible order parameter, as well as in
systems where two-point correlations are uninformative.
We expect that this technique may lead to the discovery of
order and aid in the quantification of correlation lengths in a
wealth of new systems.

FIG. 4. (a) Structure factor SðkÞ for the 1D Ising model of size L ¼ 220. SðkÞ is shown for the unaltered system, as well as for the
Rudin-Shapiro, RS-cloaked, and Random Bernoulli sequence (RBS) randomly-cloaked sequences, neither of which show any structure,
indicating that all pair correlations have been destroyed. Inset: the CID as a function of T for the uncloaked and cloaked systems: the RS-
cloaked system has nontrivial CID, but the randomly cloaked system has maximum CID and is incompressible. Data were averaged over
200 equilibrium configurations. (b) Correlation lengths for the hard-rod, CLG, and 1D Ising systems, uncloaked [extracted from g2ðrÞ,
in blue] and cloaked by RS [extracted from g2ðrÞ and QðΔÞ, in green and orange, respectively]. The data is plotted against ξCID, as
measured by CID decimation of the uncloaked systems, so that a slope of 1 (solid line) means identical scaling for the RS-cloaked and
uncloaked systems.
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