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Time-reversal symmetry breaking and entropy production are universal features of nonequilibrium
phenomena. Despite its importance in the physics of active and living systems, the entropy production of
systems with many degrees of freedom has remained of little practical significance because the high
dimensionality of their state space makes it difficult to measure. Here we introduce a local measure of
entropy production and a numerical protocol to estimate it. We establish a connection between the entropy
production and extractability of work in a given region of the system and show how this quantity depends
crucially on the degrees of freedom being tracked. We validate our approach in theory, simulation, and
experiments by considering systems of active Brownian particles undergoing motility-induced phase
separation, as well as active Brownian particles and E.coli in a rectifying device in which the time-reversal
asymmetry of the particle dynamics couples to spatial asymmetry to reveal its effects on a macro-
scopic scale.
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Time reversal symmetry breaking (TRSB) in active matter
systems arises from the self-propelled motion of individual
particles, driven by the continuous injection of energy into
the system [1–4]. TRSB is linked to the emergence of steady-
state currents in phase space, a clear signature of a system’s
departure from equilibrium,which can be quantified in terms
of the global rate of entropy production [5–13].
Notwithstanding its importance, global entropy produc-

tion has not yet found a place in the routine characterization
of experimental many-body nonequilibrium systems. The
reasons for this are twofold. First, the high-dimensional
nature of phase space has hindered the estimation of
entropy production beyond low-dimensional systems
[14–18]. Although multiple approaches have been adopted
to mitigate this problem from a variety of perspectives [19–
22], an adequate solution remains elusive.
The second, and arguablymore fundamental, reason is that

global entropy production is a single number which, as such,
cannot provide insight into the complex patterns of TRSB
events occurring in many-body systems. Crucial theoretical
insight into this problem came from Nardini et al. [23] who,
moving beyond the estimation of the global quantity,
proposed a spatially local decomposition of entropy pro-
duction. To this end, they analyzed stochastic field theories of
active model systems undergoing motility-induced phase
separation (MIPS) showing that at a coarse-grained level

TRSB events are pronounced at the interfaces while reversi-
bility is partially recovered in bulk, thus casting light on
where the system’s departure from equilibrium is more
prominent. However, the dynamics of local degrees of
freedom obtained by coarse-graining are in many cases
non-Markovian [17,24], which makes the accurate estima-
tion of the local entropy production difficult.
To overcome this problem, we introduce a universal

information-theoretic measure and a numerical protocol to
estimate it. Our approach does not require knowledge of the
equations of motion, enabling the analysis of experimental
systems. Furthermore, our method does not require infor-
mation about the memory time of the process, allowing the
evaluation of local entropy production even in systems
following non-Markovian dynamics. We then apply this
protocol to several theoretical and experimental systems.We
show that the measured local entropy production provides
comprehensive information about the nature of TRSB events
in the system, such as their characteristic length scales, as
well as whether any work can be extracted when an external
mechanism is weakly coupled to the tracked degrees of
freedom.
Local entropy production rate.—To make these ideas

concrete, we start by introducing the concept of local entropy
production in an example of active Brownian particles
(ABPs)with excluded volume interactions. TheABPs propel
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themselves at a constant speed, with a direction that diffuses
randomly. Remarkably, for high enough speed, ABPs
accumulate and form a dense cluster even when the particles
do not attract each other; this is MIPS [see Fig. 1(a) for a
snapshot].
Since ABPs are not in equilibrium, entropy is con-

stantly produced by the system. To measure entropy
production (EP), we track the system configuration
XðtÞ, consisting of both positions and orientations, over
a given observation interval τ, yielding the global state
trajectory X. Because of a lack of time reversal symmetry
in the system dynamics, we expect the time-reversed
trajectory XR obtained by playing X backward to be
distinguishable from the original forward trajectory.
Accordingly, the global EP can be quantified by the
Kullback-Leibler (KL) divergence between the forward
and the backward realizations of the trajectories:
σ ¼ τ−1hlnðP½X�=P½XR�i, where P½X� is the probability
density function (PDF) of X in the forward dynamics, and
the angled brackets denote the average over P½X�.
The global EP is a single positive number whose nonzero

value only signifies that the system is out of equilibrium.
This obscures the spatial inhomogeneity of the system; for
example, we expect distinctive patterns of nonequilibrium
particle motion in the dense phase, in the dilute phase, and
at the interface between them, which the global EP is
insensitive to. To recover this information, we turn to
measuring the local EP by overlaying an L × L square grid
over the system and specifying local states by observing the
particle occupancy in a small block chosen from the grid.

We set the grid size so that only one particle can fit in a
2 × 2 block to ensure fine enough spatial resolution,
precluding multiple occupancy and ambiguity in the
particle motion [25]. We then associate each grid point
with the state of a 2 × 2 block, for which there are five
possible configurations: either empty or one of the four
sites is being occupied. We denote this local state at time t
as χiðtÞ where the index i ¼ ðx; yÞ specifies the position of
the block. Tracking χiðtÞ yields a local trajectory χ i, with
which we define the local EP

σi ¼
1

τ
hlnðP½χ i�=P½χRi �i; ð1Þ

where χRi is the time-reversed realization of the local
trajectory and P½χ i� is the PDF of the local trajectory.
Using the measure of EP that wewill introduce presently,

we evaluated σi for a range of positions i, yielding a
spatially resolved map showing local EP. In Fig. 1(b), we
show this map for local states defined by the occupancy of
2 × 2 blocks, showing that the local EP is pronounced at the
interface between the condensed and dilute phases. To
understand this, consider the typical motion of a particle
from an initial state i to a final state f near an interface, as
depicted in Fig. 1(c). If a particle approaches the interface
from a normal direction, it is likely to stay at the contact
location while propelling toward the droplet center.
When the propulsion direction reorients itself so that it
becomes roughly parallel to the interface, the particle will
move away from the contact location. The time-reversed

FIG. 1. Normalized local entropy production rate, EP, for a MIPS cluster. (a) ABP presenting MIPS in simulation. (b) EP with 2 × 2
blocks. (c) Typical motion of an ABP approaching an interface. (d) Typical motion of an ABP propelling parallel to the interface. (e) and
(f) EP with 3 × 3 and 4 × 4 blocks, that capture progressively more degrees of freedom and EP in the dilute phase. (g) TRSB of two
ABPs colliding with each other. Normalization factors for EPs are chosen so that the fraction of samples with EPs greater than these
factors is less than 10−3. Specifically, we set the factors as (b) 2.3 × 10−3, (e) 7.8 × 10−3, and (f) 2.7 × 10−2.
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realization of this event is highly unlikely, as a particle
moving along the interface is likely to pass by without any
abrupt turns, as depicted in Fig. 1(d). This imbalance leads
to high local EP measured at the interface. Note that this
result is in agreement with the field-theoretic predictions
[23,34,35], which we reproduce for active model B in the
Supplemental Material [26].
Importantly, due to the size of the grid, information from

2 × 2 blocks can only detect TRSB events that depend on the
dynamics of a single particle, and is insensitive to events that
depend explicitly on the dynamics of multiple particles. To
study these, we next compute local EP in larger regions,
using blocks which can track two or more particles simulta-
neously [see Fig. 1(a)]. The local EP obtained with 3 × 3
blocks shown in Fig. 1(e) still presents the highest EP at the
interface, but there is also considerable entropy production in
the dilute phase. EP in the dilute phase originates from
irreversible collision events between two particles, as shown
in theupper portion of Fig. 1(g). Because of thepersistenceof
the propulsion, colliding ABPs slide along each other until
their propulsion directions become perpendicular to the line
connecting their centers, at which point the particles go past
each other. If we reverse the propulsion directions of the
particles from the final state, we will not observe the time-
reversed realization of the forward trajectory as depicted in
the lower portion of Fig. 1(g). Further enlarging the block
size to 4 × 4 reveals even more EP in the dilute phase and
a marginal increase of EP in the dense phase, as seen in
Fig. 1(f). These examples demonstrate that local EPs
measured with various choices of local states may enable
characterization of nonequilibrium events occurring in a
variety of systems.
In the Supplemental Material [26], we provide local EP

measurement results based on particle positions and ori-
entations. In this case, we observe that tracking 1 × 1
blocks is sufficient to capture TRSB events at the interface,
while tracking 2 × 2 blocks is sufficient to highlight the
distinction between the dense and the dilute phases. We
further show that EP of ABPs measured with our method
agrees with the analytical result given in Ref. [8] and also
report that similar results are reproduced with active
particles strictly on lattice.
Measure of entropy production rate.—We now proceed

to the problem of how to actually measure local EP as
defined in Eq. (1). As is evident from the equation, direct
evaluation would require the PDF of the local state
trajectories P½χ i�. Obtaining P½χ i� is, however, a daunting
task since the local dynamics exhibit a finite memory due to
interactions between the local degrees of freedom and their
environment [36].
To address this problem, we propose a measure based on

the information-theoretic quantity known as cross-parsing
complexity, C, introduced by Ziv and Merhav [36,37]. The
aim of cross parsing is to compress a sample sequence using
substrings taken from a database sequence.More intuitively,

consider a sample sequence Y ¼ ð012101110230Þ and a
database Z ¼ ð301201110310Þ. We sequentially draw the
longest consecutive array of symbols from the sample that
can also be found in the database, leading to the parsing
(012,10,1110,2,30). The resulting number of substrings is
the cross-parsing complexity, which is CðYkZÞ ¼ 5 in our
example.
Next, consider the case when Y and Z are sequences of

length N randomly drawn from two different ensembles
with probabilities PYðYÞ and PZðZÞ, respectively. In this
case, the cross-parsing complexity has been shown to
satisfy [36]

lim
N→∞

�
lnN
N

CðYkZÞ þ 1

N

X
X

PYðXÞ lnPZðXÞ
�

¼ 0:

Therefore, the cross-entropy rate SYZ of PY from PZ is

SYZ ¼ lim
N→∞

lnN
N

CðYkZÞ: ð2Þ

Amore general version of this result is derived from coding
theory in the Supplemental Material [26]. Intuitively, C is
small if the sample and the database sequences are similar,
thus yielding a small cross-entropy rate, while dissimilar
sequences lead to large C and thus a large cross-entropy
rate. When PZ ¼ PY we simply recover the entropy rate SY .
Recall that the local entropy production is the KL

divergence between the forward sequence χ i and the back-
ward sequence χRi . Since the KL divergence ofPY fromPZ is
SYZ − SY , using Eq. (2) we find that the difference of the
cross-parsing complexity between independently sampled
forward and backward sequences, Cðχ 0ikχRi Þ, and between
independently sampled forward sequences, Cðχ 0ikχ iÞ, gives
the entropy produced in an observation interval,

σ̃i ¼ lim
N→∞

lnN
N

½Cðχ 0ikχRi Þ − Cðχ 0ikχ iÞ�; ð3Þ

which is the measure (estimator) that we propose. An
estimator of this kind was originally proposed by Ziv and
Merhav [36] using cross parsing and Lempel-Ziv factoriza-
tion (viz., lossless data compression) to estimate the cross
entropy and entropy, respectively. Roldán and Parrondo
[20,38] tested the Ziv-Merhav estimator on physical systems
alongside refinements of the approach. They reported large
error and slow convergence of the estimators which make
them impractical. We recognize that the large error stems
from mixing cross parsing and compression and suggest a
symmetric construction solely using cross parsing. In the
Supplemental Material [26], we show that our measure
exhibits significantly faster convergence than previous
approaches, thus enabling the analysis presented in Fig. 1.
In terms of numerical complexity, C can be obtained

efficiently in OðNÞ time using suffix arrays [39].
Importantly, Eq. (3) can be computed without prior

PHYSICAL REVIEW LETTERS 129, 220601 (2022)

220601-3



knowledge about memory time. Finally, we note that Eq. (3)
is defined for a discrete sequence, so we must subsample a
continuous time trajectory by a time interval τ yielding a
discrete sequence of lengthN. We thus estimate the local EP
of Eq. (1) by computing σi ¼ σ̃i=τ, which would be valid for
small enough τ.
Application to experiments.—Our procedure is appli-

cable to physical and biological systems as well as to
simulations. In Fig. 2, we show a snapshot of an experi-
mental system in which E.coli are circulating in chambers
where funnels rectify the bacterial motion, creating flows
and density heterogeneity. We also show an analogous
simulation with ABPs. Using the same protocol as in Fig. 1,
with 2 × 2 blocks, we see in the lower panels that the
entropy production is largest at the funnel tips where the
particle trajectories bifurcate, and at the boundaries [40].
Work extraction.—It remains to connect local entropy

production with other physical quantities. We start by
noting that the local EP is not proportional to the heat
dissipated by the local degrees of freedom [2,41,42]. We
next employ a simple model to argue that our measured
local EP is directly related to the work that can be extracted
from a given region of the system.

To this end, we consider a work extraction mechanism
and show that our measure captures which degrees of
freedom must be coupled to in order to extract net work.
Extracting work from active matter has received much
attention recently [43–46], and our protocol is particularly
relevant in this context. Specifically, we consider a run-and-
tumble particle (RTP) on a ring with four discrete sites with
lattice spacing a [Fig. 3(a)], coupled to a thermal reservoir
with constant temperature T. The particle flips randomly
between two orientations and jumps to the neighboring
sites either driven by thermal noise or by a thrust f exerted
along its orientation. We impose the local detailed balance
condition to the particle motion, and the thrust makes
forward motion more likely than backward motion, thus
leading to TRSB [26]. For this model, we measure the EP
for three different degrees of freedom: (i) the state of the
entire system X, (ii) the particle occupancy χn on two
adjacent sites, and (iii) the particle occupancy and orienta-
tion χs on the same sites.
The results for the three measurements are shown in

Fig. 3(b). As expected, we observe dramatic dependence of
the EP on the choice of degrees of freedom. The global EP,
estimated by tracking X (blue triangles), fully recovers the
entropy production measured by accounting for the heat
dissipation (solid blue line). In contrast, the local EP for χs
(black squares) only partially captures the global EP, while
the local EP obtained by tracking χn (red circles) is zero,
since the resulting trajectory is time symmetric.
We now argue that the local EP is directly related to the

amount of work that can be extracted by coupling to the
tracked degree of freedom. That is, if a mechanism is
weakly coupled to the degree of freedom with a small
coupling strength γ, work can be extracted at the linear
order in γ only if a positive EP is obtained when tracking
the degrees of freedom in the unperturbed state. To
illustrate this, we consider an RTP with an asymmetric
“key” fixed to its head. As shown in Figs. 3(d)–3(f), we
introduce two turnstile-like mechanisms, one that couples
to χn, the other to χs. Both mechanisms extract work when
rotating counterclockwise, while releasing energy when

FIG. 2. Local entropy production of E.coli [snapshot in (a) and
EP in (c)] and ABPs [snapshot in (b) and EP in (d)] in a rectifying
cell. In the lower panels, the EP is captured with 2 × 2 blocks,
with a brighter color indicating larger EP. The particle distribu-
tions show higher particle density on the right side of the cell
driven by the funnels and particle accumulations along the walls.

FIG. 3. Entropy production and work extraction. (a) Schematic figure of the toy model and its motions. (b) EP measured with full
information X (blue triangles), occupancy and particle orientation on two sites χ s (black squares), and occupancy on two sites χ n (red
circles). The total entropy increases by fa=T for forward motion, and decreases by the same amount for backward motion, with f the
propulsion force, a the lattice constant, and T the temperature of the bath. (c) The power P≡ hWi=τ extracted by the work extraction
mechanisms shown in (d)–(f) when lnðwf=wbÞ ¼ βfa ¼ 0.25, where wf and wb are the forward and backward rates and β ¼ ðkBTÞ−1.
Solid lines are exact results [26]. Shown in (d) and (e) is the mechanism coupling to χ n, while the mechanism shown in (f) couples to χ s.
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rotating clockwise. The mechanism shown in Figs. 3(d) and
3(e) couples to χn and rotates whenever the particle moves
between two sites where the turnstile arm is placed. In
contrast, the mechanism depicted in Fig. 3(f) is orientation
specific—the turnstile rotates with the particle when it is
oriented in a clockwise direction, but does not interact with
the particle otherwise, as depicted in Fig. 3(f); it thus
couples to χs. The power harnessed is shown in Fig. 3(c),
plotted with respect to γ, and clearly shows that the
mechanism coupled to χn (red circles) does not harness
work, while for the mechanism coupled to χs (black
squares) the work extracted is linearly increasing with γ
and thus finite.
This observation can be generalized to any degrees of

freedom coupled weakly to a work extraction mechanism
based on nonequilibrium linear response theory [47]. Given
that the system is weakly perturbed by the mechanism, the
average power recorded by the mechanism during a time
interval t is given by hPi ¼ ðγ=2Þhσðχ ÞW̃ðχ Þiχ þOðγ2Þ,
where σðχ Þ and γW̃ðχ Þ are EP and the work extracted by the
mechanism, respectively, for a particular realization of χ
[26,41]. Note that W̃ðχ Þ is of order Oðγ0Þ for small γ, and
the angled brackets indicate averaging over the steady-state
measure for χ. Since entropy production is strictly zero for
any time-symmetric trajectory, this equation indicates that
the average extractable work is zero if the (local) EP
measured for χ is zero. [48].
To conclude, we have introduced a protocol to measure

local EP by devising an effective information-theoretic
measure, and demonstrated it on several numerical and
experimental systems. We have shown that it is possible to
identify which regions of the system are driven out of
equilibrium in simulations and experiments, how these
depend on the degrees of freedom being tracked, and their
relation to the locally extractable work. These results show
that the local EP is a universal and powerful tool for
studying nonequilibrium many-body systems, which
extends recent efforts to apply tools of information theory
to study physical systems [51–53]. Note that our approach
can be applied even if the governing equations of the
systems are not known, and that it can reveal nonequili-
brium features in experimental systems even when the
signature of TRSB is hidden in fluctuations. It would be
interesting to apply our method to study various aspects of
glassy dynamics, biological systems, and externally driven
systems.
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[32] F. Viela, M. Mathelié-Guinlet, A. Viljoen, and Y. F. Dufrêne,
Mol. Microbiol. 113, 683 (2020).

[33] S. K. DeWitt and E. A. Adelberg, Genetics 47, 577 (1962).
[34] R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen, D.

Marenduzzo, and M. E. Cates, Nat. Commun. 5, 4351
(2014).

[35] D. Martin, J. O’Byrne, M. E. Cates, É. Fodor, C. Nardini, J.
Tailleur, andF.vanWijland,Phys.Rev.E103, 032607(2021).

[36] J. Ziv and N. Merhav, IEEE Trans. Inf. Theory 39, 1270
(1993).

[37] A. D. Wyner, J. Ziv, and A. J. Wyner, IEEE Trans. Inf.
Theory 44, 2045 (1998).

[38] E. Roldán and J. M. R. Parrondo, Phys. Rev. Lett. 105,
150607 (2010).

[39] J. Kärkkäinen, D. Kempa, and S. J. Puglisi, in Annual
Symposium on Combinatorial Pattern Matching (Springer,
New York, 2013), pp. 189–200.

[40] In the ABP simulation, larger EP is also observed in the
higher density region on the right of the funnels due to
TRSB collision events. Such a pattern is less pronounced in
the bacterial experiment as the chamber is three-dimensional
and therefore irreversible collisions are less frequent.

[41] G. E. Crooks and S. Still, Europhys. Lett. 125, 40005
(2019).

[42] É. Fodor and M. E. Cates, Europhys. Lett. 134, 10003
(2021).

[43] P. Pietzonka, É. Fodor, C. Lohrmann, M. E. Cates, and U.
Seifert, Phys. Rev. X 9, 041032 (2019).

[44] T. Ekeh, M. E. Cates, and É. Fodor, Phys. Rev. E 102,
010101(R) (2020).

[45] T. Speck, Europhys. Lett. 114, 30006 (2016).
[46] T. Speck, Europhys. Lett. 123, 20007 (2018).
[47] C. Maes, Front. Phys. 8, 229 (2020).
[48] If χ were Markovian, alternatively, one could have arrived at

the same conclusion from the thermodynamic uncertainty
relation, hW̃ðχ Þi2 ≤ Var½W̃ðχ Þ�Sðχ Þ [49,50].

[49] A. C. Barato and U. Seifert, Phys. Rev. Lett. 114, 158101
(2015).

[50] J. M. Horowitz and T. R. Gingrich, Phys. Rev. E 96,
020103(R) (2017).

[51] S. Martiniani, P. M. Chaikin, and D. Levine, Phys. Rev. X 9,
011031 (2019).

[52] R. Avinery, M. Kornreich, and R. Beck, Phys. Rev. Lett.
123, 178102 (2019).

[53] S. Martiniani, Y. Lemberg, P. M. Chaikin, and D. Levine,
Phys. Rev. Lett. 125, 170601 (2020).

PHYSICAL REVIEW LETTERS 129, 220601 (2022)

220601-6

https://doi.org/10.1088/1751-8121/aa91b9
https://doi.org/10.1088/1751-8121/aa91b9
https://doi.org/10.1126/science.1071152
https://doi.org/10.1103/PhysRevE.85.031129
https://doi.org/10.1103/PhysRevE.85.031129
https://doi.org/10.1126/science.aac8167
https://doi.org/10.1126/science.aac8167
https://doi.org/10.1103/PhysRevLett.125.140604
https://doi.org/10.1103/PhysRevLett.125.140604
https://doi.org/10.1103/PhysRevX.7.021007
https://doi.org/10.1038/s41467-019-11051-w
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.220601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.220601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.220601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.220601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.220601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.220601
http://link.aps.org/supplemental/10.1103/PhysRevLett.129.220601
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1016/j.commatsci.2019.109363
https://doi.org/10.1016/j.commatsci.2019.109363
https://doi.org/10.1088/1742-5468/aa8c35
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1002/advs.201700982
https://doi.org/10.1111/mmi.14448
https://doi.org/10.1093/genetics/47.5.577
https://doi.org/10.1038/ncomms5351
https://doi.org/10.1038/ncomms5351
https://doi.org/10.1103/PhysRevE.103.032607
https://doi.org/10.1109/18.243444
https://doi.org/10.1109/18.243444
https://doi.org/10.1109/18.720530
https://doi.org/10.1109/18.720530
https://doi.org/10.1103/PhysRevLett.105.150607
https://doi.org/10.1103/PhysRevLett.105.150607
https://doi.org/10.1209/0295-5075/125/40005
https://doi.org/10.1209/0295-5075/125/40005
https://doi.org/10.1209/0295-5075/134/10003
https://doi.org/10.1209/0295-5075/134/10003
https://doi.org/10.1103/PhysRevX.9.041032
https://doi.org/10.1103/PhysRevE.102.010101
https://doi.org/10.1103/PhysRevE.102.010101
https://doi.org/10.1209/0295-5075/114/30006
https://doi.org/10.1209/0295-5075/123/20007
https://doi.org/10.3389/fphy.2020.00229
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevLett.114.158101
https://doi.org/10.1103/PhysRevE.96.020103
https://doi.org/10.1103/PhysRevE.96.020103
https://doi.org/10.1103/PhysRevX.9.011031
https://doi.org/10.1103/PhysRevX.9.011031
https://doi.org/10.1103/PhysRevLett.123.178102
https://doi.org/10.1103/PhysRevLett.123.178102
https://doi.org/10.1103/PhysRevLett.125.170601

