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The theoretical analysis of many problems in physics, astronomy, and applied mathematics requires an
efficient numerical exploration of multimodal parameter spaces that exhibit broken ergodicity. Monte Carlo
methods are widely used to deal with these classes of problems, but such simulations suffer from a
ubiquitous sampling problem: The probability of sampling a particular state is proportional to its entropic
weight. Devising an algorithm capable of sampling efficiently the full phase space is a long-standing
problem. Here, we report a new hybrid method for the exploration of multimodal parameter spaces
exhibiting broken ergodicity. Superposition enhanced nested sampling combines the strengths of global
optimization with the unbiased or athermal sampling of nested sampling, greatly enhancing its efficiency
with no additional parameters. We report extensive tests of this new approach for atomic clusters that are
known to have energy landscapes for which conventional sampling schemes suffer from broken ergodicity.
We also introduce a novel parallelization algorithm for nested sampling.
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I. INTRODUCTION

Computer simulations play an important role in the study
of phase transitions and critical phenomena. In particular,
stochastic techniques such as Monte Carlo (MC) methods
have proved to be powerful tools [1]. These methods rely on
the ability of the Monte Carlo algorithm to sample the
accessible volume in phase space. There are, however, many
situations where standard Monte Carlo simulations suffer
from a lack of ergodicity. In that case, more sophisticated
algorithms are needed to explore the volume in phase space
that is, in principle, accessible. Some such techniques are
based on the efficient exploration of the underlying, multi-
dimensional potential energy surface (PES) [2]. The PES, or
energy landscape, can be viewed as a collection of basins
separated by barriers, where each basin corresponds to a
particular local minimum-energy configuration. The basin
volumes define the entropic weight of the corresponding
local minima. The transition rate from one basin to another
depends on the barrier height as well as the relative entropic
weights (configurational space volumes) [2]. Many PESs of
interest exhibit frustration in the form of low-lying minima
with differentmorphologies separated by high barriers. These
structures may act as kinetic traps, when fixed-temperature

samplingmethods such asmolecular dynamics orMetropolis
Monte Carlo sampling are used. There exists a wide range of
extended or biased sampling techniques, both inMonte Carlo
sampling and in molecular dynamics, that make it possible to
speed up the sampling of landscapes with kinetic traps. These
techniques include Monte Carlo methods, such as umbrella
sampling [3,4]; density of states–based methods, such as the
Wang-Landau method [5]; and replica exchange methods
[6,7], along with their molecular-dynamics counterparts.
Examples are the replica-exchange molecular dynamics
method [8] and the metadynamics method [9]. In cases
where a biased distribution is generated, the original dis-
tribution can be reconstructed using reweighting techniques
[10,11]. However, these approaches may perform poorly
when dealing with high-dimensional spaces exhibiting bro-
ken ergodicity or, in other words, with highly multimodal
(or multifunnel [2,12–14]) parameter spaces [15–18].
In recent years, a Bayesian method known as nested

sampling [19] has emerged as a possible alternative to
extended or biased sampling methods. The nested sampling
approach has found widespread applications in astrophysics
[20,21] and cosmology [22,23] and has drawn the attention
of computational and statistical physicists [24–29].
Furthermore, the method has recently been adopted for
Bayesian model comparison in systems biology [30–32].
Nested sampling explores phase space in an unbiased
way and allows one to determine statistically the density
of states associated with shrinking fractions of phase space.
This objective is achieved by placing a constraint on the
potential energy (for instance), which decreases at each
nested sampling iteration. Like Wang-Landau sampling, the
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method is athermal and produces the density of states and the
partition function (Bayesian evidence) as its primary prod-
uct. However, nested sampling does not require binning of
the energy for systems with continuous potentials. The self-
adapting steps in energy (but constant in log phase space
volume) are attractive because the approach does not require
prior knowledge of possible phase transitions. For example,
the step size adjusts automatically as the phase space volume
shrinks near a first-order phase transition [19,25].
An important drawback of nested sampling is that when

the decreasing energy constraint forbids a transition to an
unexplored basin, that basin cannot be visited and ergo-
dicity is broken. Hence, while nested sampling certainly is
conceptually interesting, its performance is often no better
than that of conventional extended sampling methods in
dealing with systems exhibiting broken ergodicity [25]. In
the present work, we introduce a novel hybrid methodology
for the exploration and thermodynamic analysis of such
systems.
Superposition enhanced nested sampling (SENS)

combines the strengths of unbiased global optimization
techniques [2] with those of nested sampling. Global
optimization techniques such as basin-hopping [33–35]
are designed to find the lowest-energy configuration of a
PES. They are not constrained to sample according to
any distribution, so they are free to use “quick-and-dirty”
techniques while searching for the global minimum. For
example, they can take Monte Carlo steps that do not satisfy
detailed balance and make use of minimization algorithms
such as Limited-memory Broyden-Fletcher-Goldfarb-
Shanno algorithm and the conjugate gradient. Such opera-
tional freedom makes global optimization algorithms much
more efficient than generalized ensemble methods at locat-
ing the lowest-energy minima [36–40]. Collections of the
lowest-energy-minima configurations thus obtained can
then be used in the context of the superposition approach
[2,39–45] to compute the thermodynamic properties of the
system. However, doing so accurately at high temperatures
using the superposition approach alone often requires a
prohibitively large number of minima.
In the present contribution, we show how knowledge of

the lowest-energy minima and their statistical weights,
calculated using the harmonic superposition approximation
(HSA), can be exploited to enhance the problematic low-
energy behavior of nested sampling, thus making it likely
that none of the important minima and associated regions
are missed. Although we discuss SENS in the context of
energy landscapes, the method is completely general and
can be applied to any multimodal parameter space whose
minima (maxima in likelihood) can be identified by global
optimization algorithms.

II. NESTED SAMPLING

Nested sampling [19] provides an elegant solution to the
problem of evaluating the density of states, and hence the

partition function, for arbitrary systems. A likelihood value
is assigned to each possible configuration. For our
purposes, the likelihood is the Boltzmann factor
expð−E=kBTÞ, but it could be some other measure.
Typically, there are large numbers of configurations with
a low likelihood. In addition, there may be a small number
of configurations with high likelihood.
The aim of nested sampling is to sample configuration

space uniformly but with the energy constrained to lie
below a maximum value Emax that decreases iteratively
throughout the calculation. The rate of decrease is main-
tained self-consistently, such that the phase space volume
with energy less than Emax decreases by a constant factor in
each iteration.
The nested sampling algorithm starts by generating K

configurations of the system completely at random, dis-
tributed uniformly, in configuration space. The energy ER
of each of these configurations is computed and added to a
sorted list, whereR is the associated index in the sorted list.
For each of these replicas, we define the configurational
phase space volume ΩE≤ER

containing all configurations
with E ≤ ER. The key insight of nested sampling is that the
volumes ΩE≤ER

normalized by the total phase space
volume are distributed according to the beta distribu-
tion BetaðK −Rþ 1;RÞ [46]. This distribution has the
following expectation value and variance:

μR ¼ 1 −
R

K þ 1
and σ2R ¼ RðK −Rþ 1Þ

ðK þ 2ÞðK þ 1Þ2 : ð1Þ

The above formalism assumes that the total phase space
volume Ωtot is finite, but this condition can generally be
satisfied with negligible error, for example, by placing the
system in a large box.
At the ith nested sampling iteration, the replica (out of K

replicas) with highest energy Emax
i is discarded and

replaced by a new configuration sampled uniformly under
the constraint E ≤ Emax

i . The maximum energy Emax
i is

stored for later analysis. Again, the volume of configuration
space with energy less than the Rth largest energy ΩE≤ER

,
this time normalized by ΩE≤Emax

i
, is distributed according to

the beta distribution, with mean and variance given by
Eq. (1). During the nested sampling iteration, the volume of
phase space with energy below Emax contracts, on average,
by μ1 ¼ K=ðK þ 1Þ. After N nested sampling iterations,
the algorithm produces a list of the form fEmax

1 ;
Emax
2 ;…; Emax

N g. We can associate a fraction of configura-
tion space Xi ¼ ΩE≤Emax

i
=Ωtot ¼ μi1 with each Emax

i . The
density of states, or the (normalized) volume of phase space
with energy between Emax

iþ1 and Emax
i , is simply

giðEÞ ¼ Xi − Xiþ1 ¼ μi1 − μiþ1
1 ¼ 1

K þ 1

�
K

K þ 1

�
i
: ð2Þ

Thermodynamic quantities of interest, such as the mean
energy, entropy, free energy, and heat capacity, can easily
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be computed from the density of states at an arbitrary
temperature.
To generate configurations uniformly in space, we use

the strategy suggested by Skilling [19]: After removing the
configuration with the highest energy, one of the remaining
K − 1 replicas (chosen randomly) is duplicated. The new
configuration is then evolved through a Markov chain
Monte Carlo (MCMC) walk sufficiently long to decorrelate
the system from its initial state. This Monte Carlo walk is
equivalent to a normal Monte Carlo simulation at infinite
temperature. The coordinates are randomly perturbed, and
the new configuration is accepted, subject only to the
condition that the energy remains below Emax. For most
systems of interest, the vast majority of the computational
effort will be spent generating new configurations.

A. Parallelization

Nested sampling can be formulated to run in parallel
on an arbitrary number of processors. We present a
pseudocode description of our parallel implementation in
Algorithm 2. Since this scheme also constitutes the basic
framework for SENS, we define the MCMC loop in the
most general way at line 9 of Algorithm 2. For the purpose
of discussing the algorithm in its simplest form, here, we
will consider Algorithm 1.

For l ¼ 0 to N steps, do
generate trial configuration (e.g., by random
perturbation);
if Etrial ≤ Emax, accept trial configuration;

end for

ALGORITHM 1. Nested sampling MCLOOP.

At each nested sampling iteration, instead of removing
only the replica with the highest energy, we remove the P
replicas with highest energy, where P is the number of
processors available. The rate of phase space contraction is
now given by μP, leading to much faster phase space
contraction and shorter calculations in terms of wall-clock
time. This parallelization procedure was first described in
Ref. [27]. Our improvement is that we do not discard the
P − 1 replicas with highest energy but we store them for
later analysis. Phase space contraction between iterations is
still constant, but now, the post analysis is slightly more
complicated. The fraction of configuration space associated
with the nth recorded energy is

Xn ¼
Yn
i¼0

K − i%P
K þ 1 − i%P

; ð3Þ

where % is the mod operator. This method follows the same
stepping routine as the existing parallelization algorithm.
However, it produces P times as many points, hence
providing a more detailed picture of the potential energy
surface and a much more fine-grained binning of the
density of states.

III. SENS: THE CONCEPT

Global optimization is a common numerical problem,
and global optimization algorithms have been developed in
many areas of science [2,47,48]. Knowledge of the local
minima alone, however, is not sufficient to infer all the
observable properties of interest from the energy landscape
(or, in general, any parameter space). The HSA [49] (for
more details, see, e.g., Ref. [2]) allows one to compute the
density of states and the partition function, solely based on
the knowledge of the individual local minima and the local
curvatures (normal-mode frequencies) of the potential
energy landscape, via the Hessian matrix. In the HSA,
each local minimum corresponds to a harmonic basin
and observable properties are expressed as a sum over
individual contributions of the minima.

⊳Initialization
1: Generate K random configurations;
2: store their coordinates and energy in LiveList;

⊳main loop
3: while the termination condition is false, do
4: remove the P replicas fRð1Þ

m ;…;RðPÞ
m g≡ fRmg

with highest energy fEð1Þ
m > � � � > EðPÞ

m g≡ fEmg
from LiveList;

5: append fEmg to OutputList;
6: set Emax ¼ EðPÞ

m ;
7: select P replicas fRð1Þ

s ;…;RðPÞ
s g≡ fRsg from

LiveList at random;
8: add a copy of fRsg to LiveList;
9: MCLOOPðfRsg; Emax;minima:dbÞ;
10: end while

ALGORITHM 2. Parallel nested sampling.

The HSA has been shown to be very effective for several
systems [18,40,50], but the accuracy depends on how well
the potential energy of the basins can be approximated as
harmonic and how many minima are thermodynamically
important. While the HSA captures landscape anharmo-
nicity, arising from the distribution of local minima, it does
not include well anharmonicity, arising from the shape of
the well. Therefore, the HSA becomes an increasingly good
approximation at lower energies where well anharmonicity
is less important. The total number of minima increases
exponentially with system size [49,51], but it is impossible
to tell a priori how many of those are important. For
example, LJ31, a cluster of 31 isotropic particles interacting
through a Lennard-Jones potential [52], has about 3 × 1015

distinct minima [12], but only a few dozen are required to
reproduce the low-temperature thermodynamic behavior.
The global resolution of nested sampling depends on the

number of replicas K used in the simulation, which is
generally limited by the available computation time (the
larger the K, the slower the descent in energy). A more
serious problem for nested sampling is that if the barrier to
enter an unexplored funnel or superbasin is higher than the
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energy constraint Emax, that region of the PES will never be
explored if it is not already populated. For example, in a
crystallization transition, at high energy, the statistical
weight of the liquid phase will be overwhelming and there
will be no replicas in the region corresponding to the solid
phase. However, as the energy constraint decreases (and
hence the temperature), the relative statistical weight
associated with the solid phase increases. If we could
sample phase space uniformly, then at low energy, we
would observe a phase transition corresponding to crys-
tallization, but we must resort to a MCMC walk to explore
phase space. If the entrance to the superbasin correspond-
ing to the crystal has been locked out by Emax, a Markov
chain will not be able to find it, thus missing the transition.
Here, we propose a new method that combines comple-

mentary techniques: Nested sampling can sample efficiently
the high-energy regions of phase space, while at low energy, a
database ofminimaobtained by global optimization is used to
augment the survey. While nested sampling assigns the
correct statistical weight to each basin, global optimization
makes it likely that no important minima are missed. This
philosophy is also used in other methods combining replica
exchange Monte Carlo sampling with global optimization
algorithms to treat broken ergodicity [12,16,53,54].

IV. SENS: THE ALGORITHM

Employing knowledge of low-lying minima fits naturally
within the framework of nested sampling. We present here
both an exact and an approximate implementation of the
SENS algorithm. Exact SENS is fully unbiased and requires
no additional parameters than those needed in nested sam-
pling. Approximate SENS, on the other hand, is formally
biased and requires additional parameters. The reason for
presenting both methods is that, in some cases, the latter
approach can be considerably simpler to implement than the
former, while generally producing equally good, or better,
results. SENS is based on the original nested sampling
algorithm presented in Algorithm 2. The novelty of our
method resides in the augmented sampling of the parameter
space obtained by coupling the MCMC walk to the HSA.
SENScan therefore be implemented by changing the function
MCLOOPðfRsg; Emax;minima:dbÞ of Algorithm 2. A full
outline of the SENS algorithm can be found inAlgorithm 3 of
the Supplemental Material [55]. To run SENS, a database of
the lowest-energy minima must be precomputed.
In this work, we adopt basin-hopping [33–35] as the

global optimization algorithm of choice. Basin-hopping
associates anygiven point of the PES to aminimumobtained
by energyminimization, thus transforming the PES into a set
of catchment basins. This basin transformation is combined
with a sampling scheme to search for the global minimum.
At each step, the coordinates of the current minimum
configuration are perturbed to hop out the basin and
minimized again to find a newminimum. Each step between
two minima configurations is accepted with probability

Pðxold → xnewÞ ¼ minf1; exp½−βðEnew − EoldÞ�g:
If the move is rejected, the coordinates are reset to those
of the current local minimum. Since perturbations should
be large enough to step out of the catchment basin, the
step size is typically much larger than for thermody-
namic sampling. Furthermore, since detailed balance need
not hold, the step size can be dynamically adjusted to
improve sampling. Basin-hopping has been successfully
applied to a wide range of atomic, molecular, soft, and
condensed matter systems [50,56–58].

A. Exact SENS

An unbiased version of SENS can be implemented by
means of Hamiltonian replica exchange Monte Carlo
moves [59,60]: In addition to normal MC steps, we
introduce a new Monte Carlo step in which a minimum
is sampled from the database according to its HSA
configurational entropic weight:

wðbÞ
c ðEÞ ¼ ΩðbÞ

c ðEÞ
ΩcðEÞ

: ð4Þ

We define the configurational volume of basin b

ΩðbÞ
c ðEÞ ∝ nbðE − VðbÞÞκ=2Q

κ
α¼1 ν

ðbÞ
α

ð5Þ

and the total configurational volume

ΩcðEÞ ∝
X
b

nbðE − VðbÞÞκ=2Q
κ
α¼1 ν

ðbÞ
α

; ð6Þ

where VðbÞ is the potential energy of the minimum
corresponding to basin b, νðbÞα are the normal-mode vibra-
tional frequencies defined by the Hessian matrix, κ is the
number of vibrational degrees of freedom, and nb is the
degeneracy of the basin. (For Lennard-Jones clusters, nb is
the number of distinct nonsuperimposable permutation-
inversion isomers for minimum b [2].) Here, we leave out
all the constant factors that cancel out as well as overall
rotations. Once a minimum is selected, a configuration with
E ≤ Emax is then chosen uniformly from within its basin of
attraction. This approach corresponds to selecting a point
uniformly from a multidimensional harmonic well. Such
a configuration can be generated analytically; see the
Supplemental Material for details [55]. Unlike Ref. [16],
in our approach, we sample from the uniform distribution
of configurations below energy Emax, rather than from the
corresponding canonical distribution.
Thus, we obtain a configuration Rsys sampled according

to the true Hamiltonian Hsys and a trial configuration Rhar
sampled according to the HSA Hamiltonian Hhar. The
energies of the two configurations are then computed with
the other Hamiltonian. If

HharðRsysÞ ≤ Emax and HsysðRharÞ ≤ Emax; ð7Þ
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then the true distribution and the HSA distributions overlap,
the swap is accepted, and Rsys becomes Rhar; otherwise, it
is rejected. This procedure guarantees that detailed balance
is satisfied; for further discussion, refer to the Supplemental
Material [55]. In practice, only the lowest-energy minima
will successfully swap, since the HSA can only be
reasonably accurate around these basins. It is, however,
at low energy that such swaps are needed the most due to
the hard-energy constraint used by nested sampling. Note
that swaps are complemented by regular MCMC walks to
allow for the exploration of the full configuration space. In
SENS, the replicas are allowed to “tunnel” between basins,
thus improving the sampling. A more detailed description,
along with a pseudocode implementation of MCLOOP

specific to Lennard-Jones clusters, is provided in the
Supplemental Material [55].

B. Approximate SENS

The implementation of approximate SENS is somewhat
simpler but comes at the cost of at least one extra parameter.
The basic idea of approximate SENS is that the sampling of
configuration space can be augmented by starting a MCMC
walk from a local minimum configuration, sampled from
the database according to its entropic weight [Eq. (4)], with
some user-defined frequency. This frequency is intrinsi-
cally defined in exact SENS by the relative overlap of the
HSA and the true density of states. To implement approxi-
mate SENS, we only need a database of minima and their
relative weights computed according to Eq. (4). Before
each MCMC step, a random number is drawn. If this
number is less than some user-defined probability PDS, then
a minimum is selected from the database according to
the HSA weights and the MCMC walk starts from this
minimum configuration. A pseudocode implementation of
MCLOOP for approximate SENS is provided in the
Supplemental Material [55].
There are two main sources of bias in the approximate

SENS. The first one is due to the limited number of minima
from which we sample, since we cannot include the large
number of high-energy minima. The second source of error
is due to the poor quality of the HSA approximation far
from the minimum; hence, the entropic weights for the
minima are not accurate at high energy. The most obvious
way of reducing these biases is to use long MCMC walks.
In fact, if we sample from the wrong basin, a long MCMC
walk will allow the system to escape and explore regions of
phase space with greater entropic weight. However, very
long MCMC walks are computationally expensive, and if
short runs are required, we need to sample from the
database of minima carefully. If we start sampling from
the database of minima at high energy, we will possibly
introduce a bias due to overweighting of the low-energy
regions of configuration space. To avoid this problem, we
suppress sampling from the database until we are sure the
HSA is likely to describe the potential energy landscape

accurately. We use a simple function (of the Fermi type)
that delays the onset of sampling from the database of
minima and limits its maximum frequency

fonset ¼
fmax

1þ eðE
ðRÞ
min−EonÞ=ΔE

; ð8Þ

where Eon is some onset energy and EðRÞ
min is the energy of

the replica with lowest energy. Eon could be chosen as

Eðminima:dbÞ
max , the energy of the highest known minimum

(stored in the database), or as the largest energy at which
the HSA describes the system accurately. fmax and ΔE are
user-defined parameters that determine the total probability
of sampling after the onset and the width of the onset
region, respectively. For small sampling probabilities
PDS ≪ 1, the optimal frequency of sampling from the
database should scale as 1=K; a theoretical justification is
derived in the Supplemental Material [55]. Hence, for
PDS ≪ 1, we can make the probability of sampling from
the database independent of the number of replicas,
replacing fmax with fmax=K.
We identify two possible strategies for the application of

approximate SENS. One is to start sampling from a large

database early in the simulation when Eon ¼ Eðminima:dbÞ
max ,

with a small PDS; hence, we choose fmax ≪ 1. This
procedure allows nested sampling to do most of the work
but ensures that no important basins will be missed.
Alternatively, sampling from the database can be delayed
until all the high-temperature transitions have occurred, at
which point we start sampling more extensively from the
database, hence fmax ≳ 1=2. Note that the database can be
considerably smaller in this case. The first strategy is a
slight enhancement to nested sampling, while the latter
strategy interpolates between nested sampling and the HSA
in a similar spirit to the basin-sampling method [12].
Importantly, even if we sample from the database of
minima, we use the MCMC walk to explore more the
anharmonic regions of a basin, allowing us to go beyond
the harmonic approximation.

V. RESULTS

We test SENS by calculating the thermodynamic proper-
ties of Lennard-Jones clusters exhibiting broken ergodicity.
LJ clusters are systems of particles that interact via the
Lennard-Jones potential [52]

E ¼ 4ϵ
X
i<j

��
σ

rij

�
12

−
�
σ

rij

�
6
�
; ð9Þ

where ϵ is the pair well depth, σ is the separation at which
E ¼ 0, and 21=6σ is the equilibrium pair separation. LJ
clusters have served as benchmarks for many global
optimization techniques and thermodynamics sampling
[2,12,15,18,25,34].
The majority of putative ground states for LJ clusters are

based on icosahedral packings [13]. For some magic
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number LJ clusters complete Mackay icosahedra are
possible, for example, N ¼ 13, 55. Complete icosahedral
structures are considerably more stable than neighboring
sizes, and their landscape is funneled towards the global
minimum [13]. There are, however, other sizes for which
the global minimum is not icosahedral. Examples are LJ38,
whose ground state is an fcc-truncated octahedron [13], and
LJ75, whose global minimum is a Marks decahedron [13].
Because of the overwhelming number (entropic weight) of
structures based on incomplete icosahedra at high energy,
the energy landscapes of LJ clusters with nonicosahedral
global minima exhibit broken ergodicity. Calculating
accurate thermodynamic properties for these systems has
proved to be a real challenge for all conventional tech-
niques [2,15,18,25], and hybrid or more complicated
schemes [12,14,15,18] are necessary. LJ clusters with
broken ergodicity therefore provide excellent benchmarks
to test the performance of new sampling techniques.

A. LJ31
LJ31 is the smallest Lennard-Jones cluster exhibiting

broken ergodicity and a low-temperature solid-solid phase-
like transition from Mackay to anti-Mackay surface struc-
tures [13]. Convergence of the heat capacity curve for LJ31
by parallel tempering (PT) with 24 geometrically distrib-
uted temperatures in the range 0.0125 to 0.6 required
Ntotal

E ¼ 1.9 × 1011 energy evaluations to converge (curve
shown in Fig. 1). Pártay et al. [25] report that K ¼ 288 000
replicas and Ntotal

E ¼ 3.4 × 1012 energy evaluations were
needed to converge the heat capacity curve of LJ31 by
nested sampling (NS) using a low particle density of
2.31 × 10−3σ−3 (100-fold less dense than our system).
Figure 1 compares the heat capacity curves obtained by

PT, HSA (computed using ≳80 000 minima), NS, and
SENS for LJ31. The SENS and NS results correspond to
K ¼ 20 000 replicas, N ¼ 10 000 steps for each MCMC
walk, and P ¼ 16 cores. The database of minima used for
SENS contained the lowest 183 minima, although for exact
SENS, we observe that only seven minima contribute to the
swaps; see Table IV of the Supplemental Material for the
swap statistics [55]. From Fig. 1, we see that both exact
SENS and approximate SENS are well converged and agree
with the PT curve over the whole temperature range and
with the HSA at low temperature. We note that K ¼ 20 000
replicas are not nearly enough for NS to converge, and the
low-temperature peak is, in fact, completely absent. Using
this number of replicas, SENS requires half the total
number of energy evaluations of PT and 1 order of
magnitude less than NS; see Table I. The swap operations
do not constitute a noticeable overhead, and the reduction
in the total number of energy evaluations corresponds to an
equivalent reduction in wall-clock time.
In Fig. 2, we show a comparison of PT, HSA, and exact

SENS for a range of replica numbers 2500 ≤ K ≤ 20 000;
see Table I for comparison. We observe that the high-
temperature peak practically converges for K ¼ 10 000,
and it resembles the features of the converged curve quite
well, even for smaller numbers of replicas. The low-
temperature peak instead converges very quickly, for as
few as K ¼ 2500 replicas, representing an improvement in
performance of 20 times over PT. We note that one of the
great strengths of SENS is that even when a small number
of replicas are used and run times are very short, although
the curves may not be completely converged, the physical
picture produced by the method is always correct because
all the important basins are visited. On the other hand, rapid
convergence of the heat capacity curves requires the HSA
to be a good representation for the system. LJ38 is an

FIG. 1. Heat capacity curves for LJ31. PT and HSA correspond
to parallel tempering and the harmonic superposition approxi-
mation, respectively. All SENS calculations were performed
using K ¼ 20 000 replicas.

TABLE I. Comparison of methods used to obtain the LJ31 heat
capacity curves shown in Figs. 1 and 2. NðtotalÞ

E indicates the total
number of energy evaluations (summed over all processors). PT
was performed using 24 replicas spread geometrically through
the temperature range 0.0125 to 0.6. Note that approximate SENS
can perform as well as exact SENS when fewer replicas are used;
in the interest of brevity, we do not include these results, as the
LJ75 calculations illustrate clearly the capabilities of the method.

LJ31

Method K N NðtotalÞ
E

PT 1.9 × 1011

NS (Ref. [25]) 280 000 3.4 × 1012

NS 20 000 10 000 1 × 1011

SENS approximate 20 000 10 000 1 × 1011

SENS exact 20 000 10 000 1 × 1011

SENS exact 10 000 10 000 5.2 × 1010

SENS exact 5000 10 000 2.6 × 1010

SENS exact 2500 10 000 1.3 × 1010
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example for which this condition does not hold as well; see
the Supplemental Material for further details [55].

B. LJ75
LJ75 is a particularly clear example of a double-funneled

energy landscape [13] with Oð1025Þ distinct local minima
[12]. The decahedral global minimum is separated by a very
large potential energy barrier from the lowest icosahedral
minimum. Sharapov and Mandelshtam [17] showed that
Oð1012Þ (total) energy evaluations of adaptive parallel
tempering are not enough to converge the heat capacity
peak corresponding to the solid-solid phaselike transition in
LJ75 [16]. Furthermore, the rate of convergence slows down
dramatically (it practically stops) after Oð1011Þ (total)
energy evaluations, and coupling of PT to the HSA is
necessary to obtain convergence of the low-temperature
peak [16]. Figure 3 compares the heat capacity curves
obtained by HSA (computed using 758 minima) and SENS
for LJ75. SENS was carried out using K ¼ 30 000 or K ¼
60 000 replicas andN ¼ 10 000 steps for eachMCMCwalk
on P ¼ 16 processors. The database of minima for SENS
contained the lowest 758 minima. Approximate SENS
started sampling from the database at Eon ¼ −369ϵ, while
for exact SENS, only ten of the minima contribute to the
swaps; see Table VI of the Supplemental Material for swap
statistics [55]. Unlike adaptive PT [16], approximate SENS
converges in Oð1011Þ energy evaluations (Table II), but
exact SENS fails to converge the low-temperature peak for
the same number of replicas. As for LJ38, exact SENS does
not converge quickly due to the lower accuracy of the HSA,
as inferred from the extremely low swap acceptance
(Table VI of the Supplemental Material [55]). On the other
hand, approximate SENS performs considerably better than
for LJ38 because the melting transition is well separated

from the solid-solid transition, thus allowing sampling from
the database relatively early on in the simulation (right after
melting) without affecting the melting transition.

C. Methods

We define a move in a MCMC walk as the displacement
of each individual particle along a random vector (n in
total). After each MCMC walk, we update the step size in
order to keep the average acceptance ratio within range of
some target value, which we have chosen as 0.5. The
default parameter values for the onset function [Eq. (8)] are
fmax ≈ 2=3 and ΔE ¼ 1. We used a spherical box of radius
R ¼ 2.5σ for n ¼ 31, R ¼ 2.8σ for n ¼ 38, and R ¼ 3.0σ
for n ¼ 75, with no periodic boundary conditions and no
cutoff radius. All calculations were carried out on a single
workstation with P ¼ 16 processors (eight-core dual Xeon

FIG. 2. Comparison of heat capacity curves for LJ31 obtained
by exact SENS using different numbers of replicas. The PT and
HSA curves were obtained by parallel tempering and the
harmonic superposition approximation, respectively.

FIG. 3. Heat capacity curves for LJ75. The PT and HSA results
were obtained by parallel tempering and the harmonic super-
position approximation, respectively. Exact SENS calculations
were performed using K ¼ 60 000 replicas, while results
for approximate SENS calculations are shown for both K ¼
30 000 and K ¼ 60 000 replicas.

TABLE II. Comparison of methods used to obtain the LJ75 heat
capacity curves shown in Fig. 3. NðtotalÞ

E indicates the total number
of energy evaluations (summed over all processors). PT curves
are not shown, as the computational cost to converge its heat
capacity by this method is computationally prohibitive, as shown
in Ref. [16]. Exact SENS does not converge as quickly as
approximate SENS due to the low accuracy of the HSA, hence the
low swap acceptance.

LJ75

Method K N NðtotalÞ
E

SENS approximate 30 000 10 000 4 × 1011

SENS approximate 60 000 10 000 8 × 1011

SENS exact 60 000 10 000 8 × 1011
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E5-2670 2.6 GHz, Westmere) using the improved paralle-
lization scheme discussed in Sec. II A. The calculations
were terminated when the energy difference between the
replicas with highest and lowest energies was less than
10−2ϵ. Energies of the final “live” replicas were added to
the output, and the compression factor associated with the
lth live replica was computed as

μðliveÞl ¼
Yl<K
j¼0

K − j
K − jþ 1

: ð10Þ

Error bars were obtained by the compression-factor resam-
pling scheme discussed in the Supplemental Material [55].
By nested sampling or SENS iterations Niter, we mean a
whole nested sampling iteration on P processors; the total
number of energy evaluations is NðtotÞ

E ¼ N × P × Niter,
where N is the number of steps in a MCMC walk. The
computational overhead associated with global optimiza-
tion by basin-hopping is insignificant, as fewer than around
Oð105Þ energy evaluations are necessary to find the global
minima of the LJ clusters considered here [35]. Highly
modular Python/C parallel implementations of nested
sampling and SENS are publicly available [61,62].
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