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While the equilibrium properties, states, and phase transitions of interacting systems are well described
by statistical mechanics, the lack of suitable state parameters has hindered the understanding of
nonequilibrium phenomena in diverse settings, from glasses to driven systems to biology. The length
of a losslessly compressed data file is a direct measure of its information content: The more ordered the data
file is, the lower its information content and the shorter the length of its encoding can be made. Here, we
describe how data compression enables the quantification of order in nonequilibrium and equilibrium
many-body systems, both discrete and continuous, even when the underlying form of order is unknown. We
consider absorbing state models on and off lattice, as well as a system of active Brownian particles
undergoing motility-induced phase separation. The technique reliably identifies nonequilibrium phase
transitions, determines their character, quantitatively predicts certain critical exponents without prior
knowledge of the order parameters, and reveals previously unknown ordering phenomena. This technique
should provide a quantitative measure of organization in condensed matter and other systems exhibiting
collective phase transitions in and out of equilibrium.
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I. INTRODUCTION

Intuitively, the more ordered a system is, the shorter the
description required to specify a typical microstate. If the
probability distribution of the ensemble of microstates is
known, then the Shannon entropy [1] provides a quanti-
tative measure of the information content and order. For a
random variable X the Shannon entropy is defined as

HðXÞ ¼ −
X
fxg

pðxÞ logpðxÞ; ð1Þ

which may be thought of as the average uncertainty in X.
Here, pðxÞ is the probability that a given signal x is
generated by a given source; in statistical physics terms,
x would be a microstate, and the source may be thought of
as defining an ensemble. If we take x to specify microstates
of an equilibrium thermodynamic ensemble, and pðxÞ to be
the probabilities of their occurrence, then Eq. (1) repro-
duces the thermodynamic entropy appropriate to this

ensemble. It is important to understand that the framework
of equilibrium statistical thermodynamics provides a priori
probabilities, but this is not the case for systems out of
equilibrium, making the explicit computation of H, in
general, impossible [2].
Knowledge of the probability distribution is not required

for the algorithmic approach to information content pio-
neered by Kolmogorov and Chaitin [4,5]. This approach
culminated in the definition of the Kolmogorov complexity
K [6], as (loosely speaking) the length of the shortest
computer program able to generate a given data sequence
(which, for us, is a microstate of the system). When an
ensemble of microstates exists,H andK are closely related,
and, under fairly general conditions, become equal in the
large system limit [6]. However, although elegant, the
Kolmogorov complexity is not typically computable, and
so cannot be used for physical systems.

A. Computable information density

In this paper we study an easily accessible proxy for these
measures, which we will refer to as computable information
density (CID), which is proportional to the length of a
losslessly compressed data string [7]. Concretely we define

CID≡ LðxÞ
L

; ð2Þ
whereLðxÞ is the total binary code length of the compressed
sequence, and L is the length of the original sequence x
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(the number of sites in the system); seeAppendixA for further
discussion. We note that although we are using the term
“sequence,” we are not restricted to 1D strings—microstates
in any dimension may be compressed by appropriate proce-
dures [9,10].
Despite the wealth of emergent phenomena discovered in

classical nonequilibrium many-body physics, for example,
in active matter [11,12], driven colloidal systems [13], and
granular systems [14], there is still a dearth of viable
techniques capable of characterizing their collective behav-
ior, with numerous studies relying instead on the identi-
fication of ad hoc order parameters and phenomenological
descriptions.
One may ask whether the information content as

measured by the CID of microstates of a nonequilibrium
system can provide, even in principle, useful information
about the system. Although in thermodynamic equilibrium
we know that the entropy is a central quantity, this is not
known for systems far from equilibrium. Moreover, even
conceding this point in theory, there is no guarantee that
CID is sensitive enough to be fruitful. In this paper, we
answer both of these questions in the affirmative, and
demonstrate that CID is a practical and rather general
approach for characterizing the phase-behavior of many-
body nonequilibrium systems, in particular those where the
nature of ordering is unclear.
The central idea of lossless data compression algorithms

is simple: we wish to encode the data in a shorter binary
representation, which may then be decoded to recover the
original data exactly. It is natural to ask whether there is a
minimal size for the encoding, such that any shorter
encoding will lead to loss of information. The answer to
this question is provided by Shannon’s source coding
theorem [1], which states that (in the large system limit
[15]) the size of the shortest encoding that can be achieved
without loss of information is H. Among lossless com-
pression algorithms, those that do not require a priori
knowledge of the underlying ensemble are known as
universal (or adaptive) [6]. The Lempel-Ziv 77 coding
algorithm (LZ77) [16] is one such method that is also
asymptotically optimal, meaning that it produces encodings
whose size converges to H in the large system (thermo-
dynamic) limit. Thus, optimal universal data compression
algorithms may be used to approximate H for a broad class
of data [15], saturating the bound asymptotically.
For our studies, we have computed the CID using the

LZ77 compression algorithm (though other choices of
universal codes are available), with extrapolation to the
thermodynamic limit performed according to Eq. (C5); see
Appendixes A–C for a description of the algorithm and a
discussion of the extrapolation.
Data compression was first applied to the two-dimen-

sional Ising model by Sheinwald, Lempel, and Ziv [10] as a
benchmark for image compression. More recently, appli-
cation to statistical physics has been mostly through the

analysis of the time dependence of single-site variables. For
equilibrium systems, a time series of the spin or the
Edwards-Anderson autocorrelation parameter at a given
site, obtained by Monte Carlo simulation, was used to
locate the critical points of the 3D Edwards-Anderson spin
glass [17] and the 2D and 3D Ising models [18,19], and to
approximate the entropy of the 2D Ising model [19]. Data
compression has also proven to be a useful tool in the
definition and characterization of complexity of (mostly
one-dimensional) dynamical models, such as cellular
automata and dynamical systems [20–26], as well as for
turbulence [27]. Methods based on data compression have
also been used to estimate the entropy production of a
nonequilibrium stationary state [28,29] and to detect the
onset of chaos in biological systems [30–32].
In this paper, we consider several different interacting

nonequilibrium systems, both on and off lattice, in one and
two dimensions [33]. We show that CID provides an easily
applied and quantitatively accurate measure of information
content which can serve as a simple and sensitive way to
quantify order, its evolution in time, and its dependence on
control parameters [34]. In particular, we show that non-
equilibrium analogs of both discontinuous and continuous
phase transitions are well characterized by singularities in
CID, that certain critical exponents can be extracted without
a priori knowledge of the order parameter, and that pre-
viously unknown ordering phenomena can be discovered.
We note that the order reflected in the CID is distinct from

that obtained from dynamical order parameters. In equilib-
rium systems an order parameter often reflects the onset of a
broken symmetry accompanying a phase transition. When
this is the case, the singular part of the entropy (and free
energy) is expressed as an integral over a power-series
expansion in the order parameter [36]. Conversely, the order
parameter can be obtained from derivatives of the entropy
functional. Thus, the order revealed by entropy and order
parameter are intimately related.
In the nonequilibrium systems studied here, it is the

dynamics of the system which is singular at the phase
transition. The transition is characterized by an order
parameter quantifying the change in the dynamics, e.g.,
the fraction of “active” sites or particles. As of now, we
know of no way to relate the dynamics to an entropylike
quantity, e.g., the information content of the configurations
of such systems. Yet we still expect that a sudden change in
the amount of information reflects a change in “order.” In
particular, for the systems we study here, the order
parameters measure whether the system is active (viz.,
continues to evolve with time), while the CID quantifies the
spatial correlations.

II. DISCRETE SYSTEMS

A. Conserved lattice gas in 1D

To illustrate the use of CID, we consider a particularly
simple model with a nonequilibrium phase transition, the
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conserved lattice gas (CLG) in 1D. Initially, N particles are
distributed randomly on L ≥ N sites with no multiple
occupancy. An occupied site is considered active if one
of its neighbors is also occupied. The dynamics consist of
moving particles randomly from active sites to unoccupied
neighboring sites, as illustrated in Fig. 1(a) (in practice we
implement random sequential updates, so we displace one

particle at a time). The statistical state of the system is
characterized by the order parameter fa, the fraction of sites
that are active. An “absorbing state” is attained when
fa ¼ 0, at which point the dynamics ends. No absorbing
states are possible for densities ρ≡ N=L higher than the
geometrical limit ρG ¼ 0.5. For absorbing state models in
general [37], it is well known that there exists a critical

(a)

(b) (d)

(c)

(e)

FIG. 1. The 1D conserved lattice gas model of size L ¼ 105. (a) At time t ¼ 0 the system is in an active randomly sampled state (active
sites in red) and the possible moves prescribed by the dynamics are indicated by the arrows. When the particle density is below the
critical density ρc, the system relaxes to an absorbing state, such that the fraction of active sites fa ¼ 0. (b) Time dependence of the CID
as a function of particle density ρ, a cycle corresponds to L randomly attempted moves. The system orders as a function of time,
developing a cusp minimum at the critical density ρc ¼ 0.5. The inset shows the CID time-evolution profile for several densities.
(c) Characteristic time τ as a function of density ρ, as measured by the decay of fa and CID, exhibiting a divergence near ρc, in line with
the cusp minimum in panel (b). Data are from an independent set of calculations in the neighborhood of ρc, averaged over ten
independent initial conditions. The inset shows τ as a function of jρ − ρcj, exhibiting identical power-law divergence and critical
exponent νk ¼ 3� 0.3 from both measures. Lines of best fit (dashed black lines) were obtained by bootstrapped minimum mean-square
error fits using a robust covariance estimator [38,39]. (d) Comparison of the CID for random initial states (blue triangles), states found by
the dynamics after 107 cycles (black crosses), random (uniformly sampled) absorbing states below ρc generated by Monte Carlo
sampling (red circles), and active states without “00” pairs above ρc (red squares) also generated by Monte Carlo sampling. (e) Fraction
of active sites as a function of ρ, red dashed line is the exact solution from Ref. [40].
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density ρc, such that for ρ > ρc the system evolves to an
active, fluctuating steady state with a well-defined fa > 0,
while for ρ < ρc ≤ ρG, the system evolves to an absorbing
state. The 1D CLG is atypical in the sense that ρc ¼ ρG
[37], but will be seen to have nontrivial correlations in the
absorbing phase. For the 1D CLG the total number of
possible absorbing state configurations is ðð1−ρÞLρL Þwhen ρ ≤
ρG and 0 otherwise; see Appendix D for further discussion.
An example of one such state is shown in Fig. 1(a) for
t ¼ tend. States of the 1D CLG may be represented simply
as a binary string of 0’s and 1’s signifying the occupation of
the sites. These strings can easily be compressed by a large
variety of universal codes, we do so by the “unrestricted”
Lempel Ziv string-matching code, also known as LZ77
algorithm [16], described in detail in Appendix A.
We analyze a 1D CLG model of size L ¼ 105 with

periodic boundary conditions, for 99 densities in the range
0.01 ≤ ρ ≤ 0.99. Starting from random (Bernoulli distrib-
uted) initial configurations, we let the system evolve for 107

full cycles (sweeps) by random sequential updates. At
regular time intervals we measure the CID by LZ77.
In Fig. 1(b) we show the CID as a function of ρ for

different times, with the inset indicating the CID time-
evolution profiles. At time t ¼ 0 the CID matches the
Shannon entropy of a Bernoulli sequence H ¼ −ρ log ρ−
ð1 − ρÞ logð1 − ρÞ, and at low and high densities ρ the CID
remains unchanged in time. For densities near the critical
point ρc ¼ 0.5 the system organizes in time and the CID
tends to 0 at the critical point, where only a single
absorbing state is allowed. We fit the time-dependent
CID in the inset of Fig. 1(b) and the fraction of active
sites faðtÞ (not shown) with the functional form yðtÞ ¼
ðy0 − y∞Þe−t=τðt=t0Þ−δ þ y∞, where y0 and y∞ are the zero
and infinite time limits, respectively, and δ and t0 are fitted
parameters that are roughly constant for all densities. In
Fig. 1(c) we show the characteristic time τ as a function of ρ
for CID and fa, both exhibiting a divergence precisely near
ρc, in line with the cusp in Fig. 1(a). Hence, an analysis of
the CID reveals a divergence of the correlation time (critical
slowing down) in quantitative agreement with measure-
ments performed on the time decay of fa, which is the
standard order parameter for the analysis of this model. The
transition is thus continuous in nature and a fit of τ shows a
power-law divergence of the form τ ∼ jρ − ρcj−νk , with
νk ¼ 3� 0.3, see inset in Fig. 1(b).
Analysis of the CID immediately shows the extent that

the dynamics orders the states. In Fig. 1(d) we show the
CID of the final (absorbing or stationary active) states as
obtained by the dynamics (black crosses). On the active
side, ρ > ρc, we compare dynamically obtained states
(black crosses) with uniformly sampled unrestricted active
states (blue triangles—these are all allowed configurations,
the same as the initial random states), as well as with
random (uniformly sampled) active states with no 00 pairs
(red squares), since they are disallowed by the dynamics

[41]. The active configurations with no 00 pairs were
generated by Monte Carlo sampling, and their total number
is ð ρL

ð1−ρÞLÞ; see Appendix D for further discussion. The

perfect match in CID between the random active states with
no 00 and those obtained from the dynamics indicates that
this is precisely the ensemble sampled by the dynamics
above ρc. That the CID of the unrestricted active states is
much higher than these clearly highlights the degree to
which the dynamically accessible states are more ordered
than the unrestricted active states.
Ordering due to the dynamics is even more dramatic in

the absorbing phase, when ρ < ρc. Comparison of the CID
between random (uniformly sampled) absorbing states
generated by Monte Carlo sampling (red circles) and those
arrived at by the dynamics (black crosses) shows that the
dynamical states are more ordered than the random
absorbing states, with the relative gap between the two
growing as ρ → ρc. This shows that the dynamics sample
only a small subset of ordered states out of all the possible

(a)

(b)

FIG. 2. Absolute value of the autocorrelation function gðrÞ≡
hxixiþri − hxi2 for the 1D conserved lattice gas model for
(a) uniformly sampled absorbing states and (b) absorbing states
arrived at by the dynamics. The 1D CLG dynamical states are
correlated over a much larger scale.
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absorbing states. To understand the nature of the ordering
we compute the autocorrelation function gðrÞ≡ hxixiþri −
hxi2 [42] for the random absorbing states [Fig. 2(a)] and the
dynamically sampled absorbing states [Fig. 2(b)]. In both
cases, the values of gðrÞ alternate between positive and

negative values due to the effective nearest neighbor
repulsion, but as ρ → ρc it is apparent that the correlations
are much longer ranged for the dynamically sampled
absorbing states than for the uniformly sampled absorbing
states. These longer ranged correlations indicate that the

(a)

(b)

(c)

(d)

(e)

FIG. 3. 2D Manna model with size 210 × 210 and zmax ¼ 1. (a) At time t ¼ 0 the system is in a randomly sampled state and sites
occupied by more than zmax particles are active (active sites in red). At each time step, a randomly sampled active site is emptied by
redistributing all particles to its nearest neighbors, a possible move is illustrated by the red arrows. When the particle density is below the
critical density ρc, the system relaxes to an absorbing state, such that the fraction of active sites fa ¼ 0. (b) CID as a function of particle
density ρ for different times; a cycle corresponds to L randomly attempted moves. The system orders as a function of time, developing a
cusp minimum at the critical density ρc ≈ 0.683. The inset shows the CID time-evolution profile for several densities. (c) Characteristic
time τ as a function of density ρ, as measured by the decay of fa and CID, exhibiting a divergence near ρc, in line with the cusp minimum
in panel (b). The inset shows τ as a function of jρ − ρcj, exhibiting identical power-law divergence and critical exponent νk ¼ 1.3� 0.2
from both measures. Lines of best fit (dashed black lines) were obtained by bootstrapped minimum mean-square error fits using a robust
covariance estimator [38,39]. (d) Comparison of the random initial states (blue triangles), states found by the dynamics after 106 cycles
(black crosses) and random (uniformly sampled) absorbing states (red circles); the inset shows that near the critical point the absorbing
states arrived at by the dynamics have lower CID, and are more ordered than the uniformly sampled ones. (e) Fraction of active sites as a
function of ρ.
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dynamics spreads out the particles in a very uniform way as
the critical point is approached, a point which was not
appreciated in this model before it was revealed by CID.

B. Manna model in 2D

We next consider a two-dimensional system, a discrete
lattice sandpile model known as the Manna model. In this
model, the sites of a M ×M square lattice (with periodic
boundary conditions) are considered active if they are
occupied by more than zmax particles. The model allows
for an unlimited number of particles at each site and the
initial configuration is generated by depositing N ¼ ρL
particles at random on the lattice sites, where L ¼ M2 is
the total number of sites. At each time step, one active
site is selected and all of its particles redistributed to the
neighboring sites at random. This procedure is performed
repeatedly, until either there are no active sites or the system
arrives to a stationary (steady) state with a characteristic
average fraction of active sites fa. Here, we take zmax ¼ 1,
such that ρG ¼ 1 and ρc ≈ 0.683. An example of an initial
random state and a final absorbing state is given in
Fig. 3(a).
In order to compute the CID of a two- or higher-

dimensional system we flatten the grid. In 2D, we use a
Peano-Hilbert space filling curve [43]; this is also known as
a “Hilbert scan” and it requires M ¼ 2m. This scan, which
covers the lattice in a self-similar fashion and preserves
locality [44], has been shown to give optimal (distortion-
free) compression as L → ∞ [45].
In Fig. 3 we show results for the 2DManna model of size

210 × 210 over 246 densities in the range 0.3 ≤ ρ ≤ 0.95,
evolved for approximately 106 full cycles. In the CLG the
alphabet (possible site occupancies) is f0; 1g, whereas in
the Manna model the alphabet may contain any positive
integer and its size may change as the system evolves. A
reduction in alphabet size during the evolution contributes
to a decrease in the CID. In Fig. 3(b) we show the time
evolution of the CID as a function of ρ. The inset shows the
CID time-evolution profiles for some of the densities; the
curves are averaged over six independently sampled
random initial conditions. Note that CID > 1 for the initial
random configurations because the alphabet size is greater
than 2.
At long times, the system develops a sharp cusplike

minimum around ρc ≈ 0.683 indicating a continuous phase
transition, and the critical slowing-down is characterized
in Fig. 3(c). The correlation times measured from the CID
and the fraction of active sites fa are in quantitative
agreement with each other and we obtain critical exponent
νk ¼ 1.3� 0.2, in agreement with the known value [37]. In
Fig. 3(c) we compare the states after 106 iterations (black
crosses) with randomly generated absorbing states (red
circles), i.e., random binary sequences where 1’s and 0’s
occur with frequency ρ and 1 − ρ, respectively; these have
degeneracy ð LρLÞ. For the Manna model ρc < ρG, hence the

CID for random (uniformly sampled) absorbing states (red
circles) is a smooth function around ρc. The inset shows
how the absorbing states found by the dynamics have
smaller CID and thus are more ordered than the uniformly
sampled ones. Recent studies of the 2D Manna and related
models [46] indicate that they are hyperuniform [47] at the
critical point, meaning that in this limit large-scale density
fluctuations are anomalously suppressed.

III. CONTINUUM MODELS

A. Random organization in 2D

The utility of the CID measure rests on the possibility to
analyze experimental data, which do not, typically, lie on a
lattice. We therefore investigate a 2D continuum system,
the “random organization” (RandOrg) model [48], which
was developed to explain the reversible-irreversible tran-
sition observed in experiments on sheared colloidal sus-
pensions [13]. In RandOrg, the state of the system is given
by positions of particles in real space, and in order to
calculate the CID, the space must be discretized (quan-
tized). We choose a grid size such that there is at most one
particle center in each bin. Note that the resulting configu-
ration is a coarse-grained representation of the original
system and therefore the CID estimate may be subject to
systematic deviations; we briefly discuss this issue in the
Supplemental Material [49].
In the simplest variant of RandOrg, identical disks are

initially distributed randomly in space, with disks being
considered active if they overlap. Over each cycle all active
disks are given in parallel an independent random dis-
placement ϵ⃗, whose size ϵ is typically a fraction of a particle
diameter. The control parameter for this model is the area
fraction, ϕ ¼ Na0=A, where A is the area of the system
and a0 is the area of a particle. In this system ϕG ¼
ϕclose-packed ≈ 0.91, while ϕc ≈ 0.43 in the limit ϵ → 0.
RandOrg can be considered a continuous version of the
Manna model and has been shown to belong to the same
universality class [50]. An example of an initial random
state and a final absorbing state is given in Fig. 4(a).
We study RandOrg using a box of fixed area A, and

generate initial configurations by randomly depositing
26 569 × ϕ monodisperse disks with diameter d for 256
area fractions in the range 0.05 ≤ ϕ ≤ 0.8. We then let the
system evolve for approximately 1.5 × 106 full cycles with
ϵ ¼ d=3 and periodic boundary conditions. For this system
ϕc ≈ 0.364. We quantize the coordinates of the system
using a square grid fine enough that the centers of two
nonoverlapping disks cannot occupy the same grid site and
also require that the total number of bins be 2m × 2m, which
is required by the Hilbert scan; in practice this results in a
bin-size of approximately d=

ffiffiffi
3

p
.

In Fig. 4(b) we show the time evolution of the CID as a
function of ϕ and in the inset we show the CID time-
evolution profiles for some of the area fractions; the curves
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are averaged over seven independent random initial con-
ditions. As we would have expected by analogy with the
Manna model, at long times the system develops a CID
cusp around ϕc ≈ 0.364 and the critical slowing down is
characterized in Fig. 4(c). Note the remarkable agreement

between the correlation times measured from the fraction of
active particles fa and from the CID; we find νk ¼ 1.2�
0.2 on either side of the transition. In Fig. 4(d) we compare
the CID of RandOrg final stationary states (black crosses)
with those of an equilibrium hard-disk fluid (red circles),

(a)

(b)

(c)

(d)

(e)

FIG. 4. 2D random organization model with 26 569 × ϕ disks of diameter d. Coordinates are quantized (digitized) using a square grid
with bin size approximately d=

ffiffiffi
3

p
. (a) At time t ¼ 0 the system is in a randomly sampled ideal gas configuration and disks are

considered active when overlapping (active disks in red). Over each cycle the active disks are given a random displacement of size
ϵ ¼ d=3, possible moves are illustrated by the red arrows. When the area fraction is below ϕc, the system relaxes to an absorbing state,
such that the fraction of active particles fa ¼ 0. (b) CID as a function of area fraction ϕ for different times, a cycle corresponds to N
attempted parallel moves (one per particle). The system orders as a function of time, developing a cusp at the critical area fraction
ϕc ≈ 0.364. the inset shows the CID time-evolution profile for several densities. (c) Characteristic time τ as a function of density ρ, as
measured by the decay of fa and CID, exhibiting a divergence near ρc, in line with the cusp minimum in panel (b). The inset shows τ as a
function of jρ − ρcj, exhibiting identical power-law divergence and critical exponent νk ¼ 1.2� 0.2 for both measures. Lines of best fit
(dashed black lines) were obtained by bootstrapped minimum mean-square error fits using a robust covariance estimator [38,39].
(d) Comparison of the random initial states, states found by the dynamics after 1.5 × 106 cycles and hard-disk fluid state corresponding
to uniformly sampled absorbing states; the inset shows that near the critical point the absorbing states arrived at by the dynamics have
lower CID, and are more ordered than the uniformly sampled ones. (e) Fraction of active sites as a function of ϕ.
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corresponding to uniformly sampled absorbing states. The
CID of the hard-disk fluid is smooth around ϕc because the
hard-disk fluid does not crystallize until the melting density
ϕmelting ≈ 0.71. The inset shows how the absorbing states
found by the Manna dynamics are more ordered than those
of the hard-disk fluid; just as for the Manna model, the
absorbing states of RandOrg at the critical point are
hyperuniform [46].

B. Active Brownian particles

With our last example, we show that CID analysis is not
limited to absorbing state models. Here, we consider a
system of active Brownian particles exhibiting a motility-
induced phase separation at a characteristic area fraction
ϕc; such behavior has been seen in experiments [51] and
studied in theory [52–54]. The model by Fily and Marchetti
[52] consists of soft disks interacting via a short-ranged
repulsive harmonic force Fij¼ kðd− jrijjÞΘðd− jrijjÞrij=
jrijj where k is the spring constant, d is the particle
diameter, Θ is the Heavyside step function and rij ¼
ri − rj. The particles self-propel at fixed speed v0 with
orientation n̂i ¼ ðcos θisin θi

Þ. The dynamics are overdamped,
with mobility μ and zero-mean Gaussian rotational white
noise ηiðtÞ with rotational diffusion rate νr, and are
governed by the equations

∂tri ¼ v0n̂i þ μ
X
j≠i

Fij;

∂tθi ¼ ηiðtÞ: ð3Þ
We prepare the system by depositing N ¼ 16 384 × ϕ

monodisperse disks in a fixed area for 95 area fractions in
the range 0.01 ≤ ϕ ≤ 0.95. We minimize the energy by
steepest descent [55], and then let the system evolve under
periodic boundary conditions with velocity v0 ¼ 0.1,
mobility μ ¼ 1, rotational diffusion rate νr ¼ 5 × 10−4,
and spring constant k ¼ 1. We evolve the system according
to Eq. (3) for time tmax ¼ 3 × 105 and time step Δt ¼ 10−2.
We quantize the coordinates analogously to the protocol we
followed for the RandOrg model, with a bin size of
approximately d=

ffiffiffi
5

p
. In Fig. 5 we show the CID as a

function of area fraction at different times, and in the inset we
show the CID time-evolution profiles; curves are averaged
over six independent random initial configurations.
At the lowest area fractions, the system is in an

homogeneous gaslike state, and although the system is
changing constantly with time, the CID remains unchanged
from that of the initial nonoverlapping random confi-
gurations. As seen in the inset, at ϕc ≈ 0.37 (the third
curve from the bottom in the inset), the CID remains
essentially constant until about t ≈ 104 iterations, when it
drops, indicating the formation of a more ordered state.

FIG. 5. Active Brownian particles: Systems of 16 384 × ρ disks with short-range repulsion, self-propelling at speed v0 ¼ 0.1.
Coordinates are quantized (digitized) using a square grid with bin-size approximately d=

ffiffiffi
5

p
. At ϕ ≈ 0.37 the CID drops precipitously,

indicating ordering associated with clustering and motility-induced phase separation [56]. Representative configurations are shown for
ϕ ¼ 0.37, 0.39, 0.86. For the initial quenched configurations (yellow curve) the flat region for ϕ⪆0.88 corresponds to samples
consisting of small grain crystals. The inset shows the time dependence of the CID for different densities.

MARTINIANI, CHAIKIN, and LEVINE PHYS. REV. X 9, 011031 (2019)

011031-8



Inspection of the configurations shown at the top of Fig. 5
shows this to be the result of a phase separation into dense
liquidlike and less dense gaslike regions. The steplike
discontinuity in the CID between the initial time and the
long-time steady state indicate a first order phase transition.
These results confirm the density and velocity dependent
phase transition previously reported [53], but present a
clearer indication of the transition and clearly identify it as
first order, in agreement with existing theoretical results
[56,57]. In the Supplemental Material [49], we show results
for a different velocity, which shifts the critical point. At
still higher densities, the CID is not monotonic in time,
initially increasing before dropping. In this case the initial
configurations, after relaxing by steepest decent to a
minimum energy configuration, are highly structured,
and almost crystalline. When the particle activity is turned
on, the order initially becomes disturbed. At later stages the
phase separation sets in and a different order sets in,
reducing the CID.

IV. CONCLUSIONS

In what sense, then, does CID uncover “hidden” order?
We may think of hidden order as that which is not revealed
by an order parameter, but which is uncovered by the
information content of the system. For example, in the
absorbing state models we consider, we have seen that
the CID for dynamically obtained absorbing states is lower
than that for the set of all possible absorbing states,
suggesting that the dynamically obtained states are more
ordered. In the study of the conserved lattice gas we
showed evidence of the enhanced order by comparing
the pair-correlation functions for all absorbing states and
dynamically found absorbing states; to our knowledge this
enhanced spatial order was previously unknown. In the
random organization and Manna models, the lower CID of
the dynamically obtained absorbing states also suggests
spatial order, but the nature of this order remains hidden.
One may speculate that this order is related to the hyper-
uniformity associated with the critical points of these
systems.
In this work we make a particular choice of universal

code for data compression (LZ77), but other approaches are
worth exploring, such as Kieffer-Yang grammar-based
codes [58–60], prediction by partial matching [61], context
tree weighting [62], block sorting [63], and deep neural
networks [64,65]. Image-compression techniques based on
machine learning approaches have recently resurged due to
improved methods for training deep networks [66–68] and
may inspire the development of better CID estimators.
The advent and use of powerful lossless data compres-

sion algorithms is a half-century old. During this period, its
application to many problems as well as its limitations have
been extensively explored. Lossless compression not only
provides a bound for entropy, but it is a surprisingly good
one. The aim of this paper is to illustrate that the CID

provides a useful and readily implemented measure for
systems out of equilibrium, accurately predicting critical
points of phase transitions, their first or second order
nature, and even yielding some critical exponents. It allows
a quantitative comparison of different states of a system and
their time evolution, and it enables the discovery of new
phases whose order can subsequently be characterized and
studied. These features give us reason to think that CID
may find wide use in many areas of statistical many-body
physics, especially in the study of disordered and glassy
systems, and make an important contribution to our under-
standing of correlation and organization.
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APPENDIX A: LEMPEL-ZIV STRING-MATCHING
CODE (LZ77)

A lossless encoding of a data file may be thought of as a
string which may be decoded to yield the original data
exactly, with no changes or errors. There are many different
algorithms which effect lossless data compression; we
employ the unrestricted Lempel Ziv string-matching algo-
rithm, also known as LZ77 [16,70]. LZ77 is a “universal”
compression algorithm in that it will compress any given
data set, with no a priori knowledge about it. To do this, it
searches for repeating patterns in the data, and uses this
information to construct an efficient encoding.
LZ77 works as follows, beginning from an ordered

sequence of data: Looking to the right of a cursor located
at some position in the data sequence (initially, the cursor is
placed before the first character in the sequence; it will
move as the process evolves as will be detailed presently),
we search for the “longest previous factor” (LPF), which is
the longest subsequence (beginning at the cursor) which
has already occurred in the past. We represent this LPF by a
tuple ði;lÞ, where i is a pointer to the position of the
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matching subsequence (or the character itself when it is
observed for the first time) and l is the length of the
matching subsequence. The cursor is then moved to the
position just following the LPF, and the process is repeated.
The algorithm is best illustrated with an example.

Consider the sequence

x ¼ abcbabababab

of length L ¼ 12 and alphabet α ¼ fa; b; cg of size
jαj ¼ 3. Taking the first character of the string to be at
position 1, we get, for this example,

LZ77ðxÞ ¼ fða; 0Þ; ðb; 0Þ; ðc; 0Þ; ð2; 1Þ; ð1; 2Þ; ð5; 6Þg:

To understand this, we note that, at the outset, no factors
have been identified, so that the first factor is the first
character, x1 ¼ a and the length of the matching sub-
sequence is obviously 0, hence the LPF is ða; 0Þ. Moving
one position to the right, we encounter x2 ¼ b, which has
not yet been seen, and likewise for the next character,
x3 ¼ c, thus we have LPF ðb; 0Þ and ðc; 0Þ, respectively.
Moving to the next position 4, we see that of the
subsequences starting at this position, (b; ba; bab;…),
only the single character subsequence b has been encoun-
tered (at position 2); and the LPF is (2,1) instructing the
decoder to copy 1 character starting at position 2. Starting
at the following position 5, we note that the words a and ab
have already occurred (starting at position 1), but not
aba; abab;…, thus the LPF is (1,2) instructing the decoder
to copy two characters beginning at position 1. Moving to
position 7 we note that the entire remaining string, ababab,
corresponds to the previous subsequence x5x6 ¼ ab copied
cyclically for six characters, thus the LPF is (5,6). This
gives us a list of C ¼ 6 tuples with which the entire original
string may be reconstructed; it is the LZ77 encoding of the
sequence.
The total binary code length LðxÞ of the LZ77 encoding

can be computed from the number C of longest previous
factors: It takes logðjαj þ LÞ bits to specify a position in the
sequence x or a location in the dictionary α, and it takes
loglj þOðlog logljÞ bits to specify lj, the length of the
matching subsequence for the jth factor [70]. Hence, the
total binary code length is bounded as

LLZ77ðxÞ ≤ C logðLþ jαjÞ þ
XC
j¼1

loglj

þO

�XC
j¼1

log loglj

�

≤ C logCþ 2C log
L
C
þO

�
C log log

L
C

�
; ðA1Þ

where the final bound was obtained by concavity of the log
(Jensen’s inequality), we assumed L ≫ jαj, and all log are
base 2 throughout. We define the CID to be the ratio

CID≡ LðxÞ
L

; ðA2Þ

where, for the calculations in this paper, we approximate
L by

L ≈ C logCþ 2C log
L
C
: ðA3Þ

For all the systems we have studied in this paper, we have
found that the variance in LðxÞ, evaluated for different
microstates x, is negligible. Note that, although closely
related, the CID is not the same as the compression factor [8]

ϱ ¼ CID
log jαj ; ðA4Þ

corresponding to the amount of information per character of
the binary representation of the uncompressed sequence x,
although they are equivalent for binary sequences (when
jαj ¼ 2). Thus, we have that 0 ≤ ϱ ≤ 1while the CID ≥ 0 is
not bounded from above and it is indeed an information
“density.”

APPENDIX B: RATE OF CONVERGENCE

How well a code compresses a sequence is measured in
terms of the “redundancy”

R≡ E

�
LðxÞ
L

�
−H; ðB1Þ

that is the amount by which the average CID≡ LðxÞ=L
exceeds the entropy (per character) of the source. Shannon
demonstrated that the redundancy cannot be negative and
there exist optimal codes for which the redundancy is zero
[1]. It is known that when the sequence x is sampled from a
stationary and ergodic process, LZ codes achieve optimal
compression in the thermodynamic limit, that is, R → 0 as
L → ∞. For individual deterministic sequences, LZ77
codes do at least as well as the empirical (block) entropy,
and often better [70].
The rate at which optimality can be attained is rather

slow, converging as ∼ log logL= logL [71,72]. In the
following section we discuss extrapolation to the thermo-
dynamic limit, and in the Supplemental Material [49] we
analyze two examples for which the exact value of the
entropy is known analytically: a Bernoulli sequence and the
two-dimensional Ising model. This gives some insight into
the rate of convergence of LZ77 on the basis of numerical
results and established theoretical results.
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APPENDIX C: EXTRAPOLATION TO
THE THERMODYNAMIC LIMIT

It is known that the convergence rate of LZ77 for many
positive entropy sources (H > 0) scales as ∼ log logL=
logL [71,72]. Such an exponentially slow rate of con-
vergence calls for careful extrapolation to the thermody-
namic limit L → ∞. In particular, we expect that

RLZ77 ¼ AH
log logL
logL

; ðC1Þ

where RLZ77 is the redundancy for the LZ77 algorithm as
defined in Eq. (B1), H is the true Shannon entropy, and the
constant A depends on the specifics of the source (for
example, in physics terms, A would be dependent on a
control parameter such as temperature). Let us denote the
average CID for a system of size L by ĤL, so that
ĤL ≡ E½CIDðxÞ�; this is obtained operationally by meas-
uring the CID for many microstates of the same ensemble
and averaging. By rearranging Eq. (C1), we can write an
estimator for the true Shannon entropy H:

H ¼ ĤL logL
logLþ A⋆ log logL as L → ∞; ðC2Þ

where we have replaced A by A⋆, which will be extracted
from finite-size scaling analysis. This is done by plotting
ĤL vs log logL= logL, which assuming Eq. (C2), should
go as

ĤL ¼ Ĥ∞ þ A⋆Ĥ∞
log logL
logL

: ðC3Þ

This is a straight line with intercept Ĥ∞, which is our
estimate for H and slope A⋆Ĥ∞, both of which will depend
on the system being studied.
The finite-size scaling analysis above is quite compute

intensive, and we have found that a good alternative
estimator is obtained by using the value of A⋆ for a
Bernoulli sequence. Rearranging Eq. (C2), and using the
fact that H ¼ 1 for Bernoulli sequences, gives

A⋆ðBernÞ ¼ ðĤðBernÞ
L − 1Þ logL

log logL
; ðC4Þ

where ĤðBernÞ
L is the average CID for a Bernoulli sequence

of length L. Note that typically for binary sequences

A⋆ ≥ Â⋆ðBernÞ
, a fact that we verify in Figs. S2d and S3d

[49]. This choice yields the estimator

Ĥ∞ ¼ ĤL

ĤðBernÞ
L

: ðC5Þ

In other words, this extrapolation corresponds to pinning
the CID to one for random binary sequences (so, for

example, the CID for the high T Ising model tends to one).
This is the estimator we have used in this paper. In the
Supplemental Material [49], we show explicit finite-size
scaling analysis for two analytically tractable systems, the
1D Bernoulli sequences and the 2D Ising model.

APPENDIX D: NUMBER OF STATES OF
CONSERVED LATTICE GAS IN 1D

The absorbing states of the conserved lattice gas in 1D
are defined such that no “11” can be observed [40].
Likewise, the dynamically accessible active states are
such that no “00” can be observed. The implication of
this fact is that the number of states is symmetrical above
and below the absorbing transition at ρc ¼ 0.5. For
absorbing states at density ρ, replacing all the 0’s with
1’s will yield a valid active state with density 1 − ρ, and
vice versa.
We calculate the number of states for random absorbing

states and, equivalently, active states. This can be achieved
easily by considering a system of length L and noting that
the combination of elements and , where such
that , yields valid absorbing states
with density ρ satisfying these simple relations

ðD1Þ

ðD2Þ

Then the number of accessible statesΩwill be equivalent to
the number of permutations of the two sets:

ðD3Þ

Note that the expression for the active side can be obtained
from the expression for the absorbing side by the simple
substitution ρ → 1 − ρ, and vice versa.
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