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ABSTRACT: Engineered proteins have emerged as novel
diagnostics, therapeutics, and catalysts. Often, poor protein
developability�quantified by expression, solubility, and stabil-
ity�hinders utility. The ability to predict protein developability
from amino acid sequence would reduce the experimental burden
when selecting candidates. Recent advances in screening
technologies enabled a high-throughput (HT) developability
dataset for 105 of 1020 possible variants of protein ligand scaffold
Gp2. In this work, we evaluate the ability of neural networks to
learn a developability representation from a HT dataset and
transfer this knowledge to predict recombinant expression beyond
observed sequences. The model convolves learned amino acid
properties to predict expression levels 44% closer to the
experimental variance compared to a non-embedded control. Analysis of learned amino acid embeddings highlights the uniqueness
of cysteine, the importance of hydrophobicity and charge, and the unimportance of aromaticity, when aiming to improve the
developability of small proteins. We identify clusters of similar sequences with increased recombinant expression through nonlinear
dimensionality reduction and we explore the inferred expression landscape via nested sampling. The analysis enables the first direct
visualization of the fitness landscape and highlights the existence of evolutionary bottlenecks in sequence space giving rise to
competing subpopulations of sequences with different developability. The work advances applied protein engineering efforts by
predicting and interpreting protein scaffold expression from a limited dataset. Furthermore, our statistical mechanical treatment of
the problem advances foundational efforts to characterize the structure of the protein fitness landscape and the amino acid
characteristics that influence protein developability.
KEYWORDS: protein, developability, sequence, landscape, predictive, model

■ INTRODUCTION
Engineered proteins have broad utility as therapeutics,1

diagnostics,2 targeted drug-delivery vehicles,3 and as commer-
cial products including industrial enzymes,4 and agricultural
processing catalysts.5,6 Beyond the primary function (such as
binding affinity or enzymatic activity), the utility of the protein
is also dependent on the ability to be manufactured,
transported, and stored while maintaining functionality.
Commonly termed developability,7,8 this often-overlooked
property�quantified by stability, solubility, and production
yield�is not typically assessed until late in the commercializa-
tion pipeline.9,10 Late-stage developability failures: (i) require
substantial time for engineering or discovery of a new lead, (ii)
add avoidable costs which are often passed on to the
consumer, and (iii) prevent the immediate use of proteins
that would otherwise benefit society.11 The ability to predict
protein developability and design beneficial mutations would

ease the manufacturing process by reducing the experimental
effort in selecting lead candidates for further evaluation.11,12

Predicting protein developability from amino acid sequence
is nontrivial due to a myriad of factors: (i) the combinatorial
space resulting from 20 canonical amino acids possible at each
position produces an exceedingly large sequence domain, (ii)
the sequence-developability landscape is believed to be rugged
where a single mutation has the ability to eliminate
functionality,13 and (iii) traditional developability assays
often drastically undersample the landscape due to exper-
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imental constraints.14 The combination of these factors
suggests the creation of a sequence-developability model, and
the accurate determination of the most beneficial mutations
will require advanced models and sampling techniques.

Recent advances in protein modeling suggest that machine
learning possesses the ability to accurately predict functionality
with sufficiently thorough and high-quality training data.15,16

However, it remains unclear which embedding, or numeric
representation, for proteins results in the most accurate and
efficiently trained model. The traditional one-hot (OH)
embedding for categorical variables creates a sparse embedding
that lacks knowledge of physicochemical similarities between
amino acids and is likely to result in poor performance.17,18

Alternative approaches attempt to utilize precomputed amino
acid properties, such as AAindex19 or structurally based
properties, such as non-polar surface area or contact density,20

to embed sequences. However, determining the correct set of
properties to use can lead to an exhaustive yet still incomplete
search. An increasingly popular approach is to utilize an
evolutionary-based model trained from homologs.21−23 Never-
theless, properties that impact natural proteins (likely including
primary function, natural mutational rates, and likelihood of
experimental sampling) may not be the properties useful for
assessing developability. As a result, we believe that the most
efficient method of training a sequence-developability model
will use more direct experimental developability proxies,
collected in high-throughput (HT), that can be transferred
to predict traditional developability metrics. Our proposed
method thus reflects current developability pipelines7,24 in
applying informed developability metrics to learn a latent
developability profile and extends such methods via leveraging
this information to predict a given developability metric of
interest.

In this study, we aimed to train and test a sequence-based
model to predict one metric of developability�recombinant

expression�for variants of the protein ligand scaffold Gp2.
While specific variants of this 45−49 amino acid protein
scaffold have been shown to possess novel binding activity,25,26

serve as a diagnostic in PET imaging,27 and inhibit growth of
breast cancer cells,28 many variants still possess poor
developability. In a prior study, a series of three HT
assays�on-yeast protease resistance, expression as a fusion
with a fragment of split green fluorescent protein (GFP), and
modular insertion in split β-lactamase�were validated by
mutual information and prediction of Gp2 variant yield (mg/
L) via bacterial expression in two E. coli strains�T7 Express
lysY/Iq (Iq) and SHuffle T7 Express lysY (SH).17 Herein, we
assess the ability to first train a sequence-based machine
learning model to predict HT assay performance and transfer
the developability representation (DevRep) to improve the
accuracy in prediction of a traditional developability metric
(Figure 1). After building a predictive model, we (i) analyze
the learned sequence representation to identify factors driving
recombinant expression, (ii) use enhanced sampling techni-
ques to explore and portray the developability landscape and to
identify high-yield variants, and (iii) validate the findings
experimentally showing that in silico directed evolution can
significantly outperform random mutagenesis.

■ RESULTS
Protein Embeddings Predict HT Assay Developabil-

ity. A protein’s properties are determined by the interaction
between amino acids, with various chemical properties,
arranged in a three-dimensional structure uniquely determined
by its linear amino acid sequence. We constructed models that
first learn amino acid properties and then combine them to
create an embedding representative of Gp2 paratope variants
(Figure 2a). We considered three architectures: (i) flat�
where all amino acid properties at all positions interact at once,
(ii) recurrent�where amino acid properties are fed one at a

Figure 1. Prediction of protein developability via transfer learning. A sequence-based model to predict developability is trained in two steps. Task 1
(blue, top): large database of protein assay scores is used to train a mapping (model A1) from amino acid sequence to HT assay scores through a
learned developability latent space representation (DevRep). Task 2 (yellow, bottom): by transferring the representation, the expression yield (a
traditional metric of developability) can be predicted when training a top model with a smaller dataset.
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time into a memory unit that is updated as a function of the
previously observed positions, and (iii) convolutional�where
amino acid properties are first summarized in a local region of
the protein and then combined to obtain a full protein
embedding. Multitask learning was applied to use all three HT
assays to train a single developability embedding. Previous
analysis revealed that this set of three HT assays was most
informative and least redundant with respect to inferring
recombinant yield, a low-throughput traditional metric for
developability.17 We allowed dense layers between the protein
embedding and assay scores [one to five layers permitted,
hyperparameter optimization during cross-validation (CV)

resulted in four layers] after the concatenation of a OH-
encoded assay-identifying vector. The range of hyperparameter
for the embedding layers and top-model considered during CV
are detailed in Tables S1 and S2, respectively; the final set of
DevRep hyperparameters is shown in Table S3.

The performance of HT assay score prediction was
compared to a series of controls as assessed by the mean-
squared error (MSE) of the CV set and an independent test set
(Figure 2b). All three architectures using sequence information
were more accurate than the assay-only model (independent
two-way Student’s t-test p < 0.0001 for all the three embedding
methods). We compared these architectures’ performance to

Figure 2. Protein embedding strategies based on interacting amino acid properties predict HT developability assay scores. (a) Gp2 paratope
residues are embedded as learned amino acid properties and are combined via three different strategies into a developability representation,
identified via a red outline. (b) Embedded and non-embedded (OH) architectures were trained to predict assay scores via CV and evaluated on an
independent test set of sequences (independent two-way Student’s t-test for embeddings vs non-embeddings p < 0.05). (c) Convolutional
architecture’s predictions are compared to the true assay scores (Prot: protease resistance, GFP: soluble expression in split-GFP system, βLac:
modularity in split-β-lactamase) as a kernel density plot. The number of unique Gp2 variants and the Spearman’s rank correlation are displayed.
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the experimental MSE, viz. the variance of our measurements.
This experimental assay variance was calculated as the
sequence-averaged trial-to-trial (N = 3) variance of the assay
scores.17 Dividing the variance by N = 3 yields the squared
standard error (SSE) (experimental assay CV SSE: 8.5 × 10−3;
experimental assay test SSE: 7.8 × 10−3). The SSE represents
our confidence in the assay scores when averaged over multiple
observations/trials. Interestingly, the protein-inspired architec-
tures can learn from multiple trials and thus predict assay
scores with lower MSE than the experimental variance (though
not as low as the experimental SSE), highlighting the
previously noted low resolution of a single trial of the assays.17

We also compared the results to models that take as input a flat
OH encoding of the amino acids of Gp2 paratope (i.e., without
linearly embedding the individual OH vectors first). We
observe that a nonlinear model (flat sequence with dense layers
between sequence and assay score) significantly outperforms a
linear (ridge regression) model (independent two-way
Student’s t-test p < 10−6). The feedforward neural network
(FNN) and convolutional neural netwok (CNN) embedding
models (which take in linear-embedding amino acid sequences
as inputs) in turn significantly outperform the nonlinear model
(independent two-way Student’s t-test p < 0.0001). We then
visualized the relative correlation of the convolutional model’s
predicted versus experimental assay score (Figure 2c). We
found that the model was not equally predictive across assays,
with the most accurate performance for the on-yeast protease
assay.
Testing Transferability to Traditional Developability

Metric. Having developed a series of protein embeddings

trained on and capable of predicting HT developability assay
performance, we asked next if the same embeddings could be
transferred to predict a traditional metric of developability.
Keeping the embedding parameters constant (Figure 1, model
A1), we fit a separate top model (Figure 1, model B) to predict
the soluble Gp2 yield in two E. coli bacterial strains�Iq and
SH�via multitask learning using a OH-encoded strain
identifying vector. We used both linear (ridge regression)
and nonlinear models [FNN, support vector machine (SVM)
and random forest] to account for possible complex
interactions between the embeddings and yield.

We found that transferring embeddings trained via assay
scores resulted in the prediction of yield more accurately than a
model trained directly from both (i) a OH-encoded sequence
to yield and (ii) models trained on embeddings directly
inferred from task 2 (viz., recombinant yield prediction).
During CV, the recurrent embedding with a random forest top
model and the convolutional model with an SVM top model
exhibited optimal performance (Figure 3a). Upon evaluation of
an independent test set, the convolutional embedding with an
SVM top model produced the most generalizable model
(Figure 3b) while the recurrent embedding suffered from
overfitting. Compared to the OH model with a random forest
top model, the convolutional embedding reduced the gap to
experimental variance (or MSE) by 44%. A Yeo-Johnson
transformation was additionally individually applied to these
yield measurements to remove correlation between error and
yield.17 The corresponding yield SSE divides the yield
experimental variance by N = 3 (experimental yield CV SSE:
0.117; experimental yield test SSE: 0.121). Additionally, the

Figure 3. Transferred convolutional embedding predicts yield more accurately than traditional embedding strategy. (a) CV and test performances
of predicting yield comparing a traditional OH embedding to protein inspired embeddings trained by HT assay scores. (b) Convolutional
embedding with a SVM top model’s prediction of yields versus experimentally measured yield across E. coli strains Iq and SH.
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convolutional embedding was also able to outperform a model
trained on experimentally measured assay scores (CNN test
MSE: 0.53 ± 0.03; experimental assay test MSE: 0.56 ± 0.004)
(p < 0.05, independent two-way Student’s t-test) suggesting
the embedding can capture experimental assay information at
least as well as a more traditional representation of the
(experimentally determined) proxy HT assays to yield.
Dependence on HT Assays. Having observed the success

of the transfer learning approach utilizing all three HT assays,17

we sought to (i) understand the importance of each individual
assay in creating a transferable embedding and (ii) understand
if the transfer learning approach routinely creates a more
informative representation than the direct use of HT assay
scores. Each combination of HT assays was used to fit the
three embedding architectures utilized in this study (flat,
recurrent, and convolutional). The three top model
architectures (ridge, random forest, and SVM) were first
trained on each HT assay combination’s embedding. The yield
prediction accuracies of these models were then contrasted

against those of the optimal top model (Figure 4a). The
combination of all three HT assays created the optimal model.
Combinations utilizing the on-yeast protease assay resulted in
losses lower than those without (p < 0.01, independent two-
way Student’s t-test). In fact, this assay alone achieves an error
within 2% of the model utilizing all three HT assays. This
suggests that the on-yeast protease assay is the most
informative assay and could potentially be used independently
in future studies.

The ability of the transfer learning training strategy to
identify developability trends and average out noisy signals
from similar sequences enables more accurate predictions than
direct use of experimental HT assay outputs. Indeed, we
previously observed that the transfer learning model slightly
outperformed a direct assay score to yield model (Figure 3a).
We, therefore, sought to understand if transfer learning was
successful because of the use of multiple assays and/or of the
learning strategy more generally. To answer this question, we
plotted the accuracy of models trained directly on

Figure 4. On-yeast protease assay is most informative and transfer learning enables discovery of true signal from imperfect HT assay proxies. (a)
Developability representation and top model to yield was trained with combinations of HT assays. The prediction error of sequence yield is
grouped by assay combination and colored by embedding architecture. Error bars represent standard deviation of loss from N = 10 stochastically
trained embeddings and top models. (b) Yield predictions from assay scores and the most accurate trained embeddings for each combination of
HT assays suggests that transfer learning is more accurate than models that take as input the experimental assay scores.

Figure 5. Alternative model CV and test performance. (a) DevRep controls (first outlined in Figure 3a). (b) Predicted high-throughput assays are
used to predict yield. (c) Sequence-to-yield model trained on yields predicted from experimental HT data.
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experimentally measured assay scores to the accuracy of
models that utilized the assay scores to train a representation
that was transferred to predict yield (Figure 4b). We observed
a correlation (Spearman’s ρ = 0.96) between the losses,
suggesting that the more relevant assay score combinations
enable more accurate embeddings regardless of learning
strategy. We also observed a significant systematic decrease
of loss from transfer learning models compared to models
trained directly on assay scores (independent two-way
Student’s t-test p < 0.01), Figure 4b. The ability of transfer
learning to consistently outperform assay score models, even
when a single assay is used, suggests the model can utilize
sequence information to denoise errors present in the assay
output.
Alternative Model Building Approaches. After success-

ful construction of the transfer learning model, we sought to
validate the optimality of our transfer-learning strategy. In one
alternative strategy, we evaluated the possibility of using
DevRep to predict HT assay scores from sequences and then
to predict the experimental yield measurements from these
predicted assay scores (rather than from the DevRep

embedded sequences). In another, we evaluated the possibility
of predicting yields from the experimental assay scores first and
then to train a sequence-to-yield model on these predicted
yields (skipping the transfer learning altogether). We display
the results of this analysis in Figure 5, showing DevRep
(“transfer learning”) and relevant controls (a), predicted HT
assays (b), and predicted yields (c).

Briefly, both alternative strategies displayed significantly
poorer performance and greater overfitting relative to the
DevRep controls (Figure 5b,c). Further discussion of these
regimes is available in Figure S1 and corresponding sections of
Supporting Information and Methods 1 and 1.4, respectively.
This analysis supports our choice of developing a transfer
learning approach in which only experimental (rather than
predicted) assays and yields are used to learn a developability
representation that when used as the input (viz., transferred) to
a specialized model outperforms alternative approaches.
Dependence on Sample Size. We next sought to

understand the relationship between the size of the training
datasets and the accuracy of the model. To this end, we
randomly subsampled unique sequences from the HT assay

Figure 6. Analysis of trained embeddings reveals properties related to developability. (a) PC of the 19-dimensional amino acid embedding, colored
by category of residue. EV = explained variance. (b) Inter- and intraresidue category distances highlighting the uniqueness of cysteine and lack of
difference between aromatic and aliphatic residues. (c) Clusters of sequences were identified via UMAP and hdbscan of the 45,433 sequences used
for training. (d) Developability, as predicted by yield, varies between clusters trained on HT assay scores.
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dataset to develop convolutional embeddings and compare
performance to nontransfer learning models that take as input
a simple OH encoded representation of the sequence, or the
experimental assay scores (Figure S2). DevRep performance
systematically improved relative to controls as training data
increased, highlighting further potential performance improve-
ments from more data. The control models show greater
efficiency on smaller sample sizes compared with DevRep.

Model Interpretation. We have shown that an accurate
model for the prediction of developability metrics such as the
soluble yield of Gp2 in E. coli can be obtained by transfer
learning. Specifically, we utilize a convolutional model to infer
an embedding from a set of three HT assays and feed
(transfer) the embedding to an SVM (top) model to predict
yield. We refer to this model as “DevRep”, and in what follows
we explore the physical significance of the learned
representation and ascend the resulting developability land-

Figure 7. HT assay-trained embedding contains more developability information than alternative embeddings. (a) Comparison of protein
representations’ ability to predict the yield as represented by the loss on an independent set of sequences. (b) Variants were plotted using UMAP
for each embedding. (top) Color represents experimentally measured developability. (bottom) Sequences were clustered by UMAP coordinates.
Color represents unique clusters. (c) Variance in predicted yield across sequences within a given cluster. (d) Correlation between the intracluster
yield variance and the corresponding models’ (trained using the same embedding) predictive performance confirms that models that cluster
sequences with similar yield also achieve better predictive performance, indicating that the embedding is informative about the predicted quantity
(yield).
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scape, yielding both a quantitative visualization of the
landscape and a library of diverse and highly developable
variants. The candidates of this library were then exper-
imentally found to be produced in higher yield than sequences
obtained by random mutagenesis.
AA Embedding. First, we analyzed the trained amino acid

embeddings to determine what properties are most relevant to
the developability of Gp2 (Figure 6a). We evaluated if we
could identify linearly separable latent amino acid features
from our model via principal component analysis (PCA). The
19 feature dimensions (or inferred “properties”) were distilled
down to three principal components (PCs) which explain 68%
of the total variance. Upon inspection, we determined that
cysteine is uniquely separated in PC 1 and 2. Additionally, PC
2 appears to separate the remaining residues by hydrophobicity
by placing aromatic and aliphatic residues away from polar and
charged residues. PC 3 further separates hydrophilic residues
into negative, neutral, and positively charged. Interestingly,
histidine (which possesses a pKa near experimental conditions)
is located closer to neutral amino acids compared to arginine
(R) and lysine (K), commenting on the ability of the model to
learn about both charged states. We then compared each PC to
the AAindex19 list of properties in an attempt to find the most
correlative physicochemical property: PC 1�coefficient over
single-domain globular proteins (ρ = 0.91), a measurement of
hydrophobicity29 again underscoring its importance on
developability; PC 2�normalized frequency of N-terminal
nonbeta region (ρ = 0.86), a measurement of residue
frequency in nonstructured regions;30 and PC3�helix
termination parameter at positions j-2, j-1, and j (ρ = 0.83),
a measurement of residue frequency in short helical
structures.31 Together, PC 2 and 3 suggest that the paratopes
may be balancing between a flexible loop and a short helical
conformation to provide stability.

We further evaluated the average inter- and intraresidue PC
distances (Figure 6b). Each identified cluster of residues has a
lower intraresidue distance than inter-residue distance except
for aromatic (F, W, Y) and hydrophobic aliphatic (A, I, L, M,
V) residues suggesting the hydrophobic nature of these
residues outweighed the relative size difference and additional
interaction capabilities of aromatic rings.
Clustering of Training Sequences in Developability

Space. We next assessed the interaction of the residue
embeddings by converting the 97-dimensional DevRep
embedding for the 45,433 training sequences via UMAP.32

UMAP accounts for nonlinearly related features; we thus chose
UMAP (rather than PCA) for this analysis as we hypothesize
that sequence embeddings are not linearly separable. We then
utilized hdbscan33 to identify 19 clusters of sequences from the
two-dimensional UMAP space (Figure 6c). We discovered that
the clusters contain information about the variant develop-
ability by finding a significant difference in developability
distributions as a function of cluster (Figure 6d, Kruskal−
Wallis H-test, p < 0.05). We further investigated the UMAP
distributions of these clusters (Figure S3). This analysis
suggests that poorly developable clusters (Figure 6d) are
separated along a nonlinear manifold in DevRep space from
highly developable clusters (Figure S3a). Additionally, the
differences in amino acid frequencies between the selected
clusters, paired with the amino acid embedding analysis,
suggest that the model learned residues’ interactions,
particularly with cysteines (Figure S3b).

Comparison to Alternative Protein Embeddings. We
next compared DevRep to models built with other state-of-the-
art protein embeddings. The AAindex19 was used to create an
embedding based upon physiochemical properties. As the
index is known to contain several similar entries, PCA was used
to isolate 3 and 10 residue properties. The paratope was then
converted into either of these sets of AAindex properties and
flattened. We also compared DevRep to four representations
trained on evolutionary properties: concatenated OneHot
encoding with the evidence lower bound34 (ELBO)35 inferred
from a DeepSequence variational autoencoder (DS-VAE)34

trained on HMMER36 that suggested homologous sequences
to Gp2 within the UniRef10037 database (viz. aDS-VAE),
BERT38 transformer embedding22 that was trained on the
Pfam39 database via predicting masked residues (viz., BERT),
UniRep21 that was trained autoregressively on the UniRef37

database (viz., UniRep), and evolutionarily (evo) tuned
UniRep (viz., evoUniRep) obtained by isolating homologous
sequences to Gp2 via HMMER40 and updating the embedding
via the Jax-UniRep41 software package. The augmented VAE
concatenations were constructed by concatenating ELBOs to
OneHot encodings of either the full sequence (“full”) or the
paratope sequence (“paratope”). Similarly, the BERT and
UniRep evolutionary embeddings were tested by averaging
over either the full or the paratope sequences.

Each model built on these embeddings was trained to
predict yield utilizing the same architectures and hyper-
parameter search strategy as for DevRep (Figure 7a). We
found that DevRep was able to predict yield significantly more
accurately than every other embedding. As expected, the
evolutionary-based embeddings (particularly UniRep para-
tope) were able to predict the yield more accurately than the
strain-only and OH controls. To aid interpretability of what
physicochemical properties enabled this superior performance
relative to our controls, we repeated the analysis as shown in
Figure 6a,b across the best-performing benchmark embeddings
(Figure S4).

DevRep demonstrated the tightest intragroup clustering
(0.34 ± 0.18 PC distance) and highest intergroup distinction
(2.7 ± 1.4 PC distance), including substantial differentiation of
cysteine (4.6 ± 0.2), with only UniRep paratope displaying
comparable cysteine component distance (3.7 ± 0.2) with
respect to all other physicochemical components as referenced
against the top-performing AAindex embedding, AAindex10
(1.7 ± 0.4). This realization demonstrates DevRep’s uniquely
efficient strength to find and use underlying developability
relationships compared to other embedding controls. The poor
performance of the AAindex also suggests that traditional
physicochemical properties are not the best way to describe
Gp2 variant developability.

To ensure that the better performance of DevRep in
predicting yield was not due to poor model development, we
assessed the relationship between variation of sequences using
each embedding and the measured developability. The 195
unique sequences with experimentally measured yield were
embedded and transformed for visualization via UMAP
(Figure 7b). We performed clustering in the UMAP space
and calculated the average intracluster variance of the yield to
estimate how much information about developability was
encoded in the embedding; we associate lower transformed
embedding intracluster variance with richer developability
information content and presentation (Figure 7c). We found
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that the HT assay scores and DevRep’s UMAP representation
were most informative about yield (Figure 7d).
Sequence Space Analysis Via Nested Sampling.

Rather than relying on the skewed experimentally observed
distribution of developability, we sought to use nested
sampling (NS) to systematically characterize the structure of
the fitness landscape while identifying highly developable
sequences. At every iteration, NS reduces the fraction of
available sequence space “volume” (viz., the number of
available sequences) by a constant proportion. Note that this
sequence space is analogous to the more general phase space in
statistical mechanics. As a result, we can use the output of NS
(a list of threshold sequences and their associated yield) to
compute the density of states (DOS) as a function of

developability (yield). Put simply, we can estimate the relative
number of sequences available at any given developability
(more generally any quantifiable fitness metric). Computation
of the DOS also allows us to determine the analogs of
thermodynamic properties such as entropy, mean develop-
ability, and developability fluctuations (analogous to the heat
capacity computed from the fluctuations in internal energy for
a thermodynamic system). For example, in the context of
developability, the analog heat capacity measures the rate of
change in the mean fitness of the population upon varying
selective pressure, β. These thermodynamic analogs help to
identify the occurrence of “phase transitions.” Such transitions
occur when there are competing subpopulations of sequences
with different developability, one of which becomes dominant

Figure 8. NS characterizes the developability-sequence landscape. (a) NS was performed using 100 evolving sequences while accepting mutations
with yields above the threshold per iteration. The threshold yield and corresponding sequences were determined by the lowest yield of the evolving
sequences. (b) DOSs for each level of developability were determined and used to estimate the expected developability, heat capacity, and entropy
at various inverse temperatures (selective pressure in this context). Two main phase transitions are identified with a dashed line (c,d). The UMAP
representation displays the landscape splitting into distinct clusters of DevRep space above the transition. Recorded sequences’ predicted
developabilities increase from red to purple. (e) Disconnectivity plot for the sequence space displays a landscape with competing developability
peaks (when β grows large enough that a lower peak becomes depleted and a higher one enriched, we observe a phase transition).
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upon varying selective pressure.42,43 We ran the algorithm with
100 evolving sequences, removing the lowest yield sequence
and thus contracting the phase volume by a factor of 100/101
(∼0.99% of its original volume) at every iteration until
convergence to a single sequence (Figure 8a). We then utilized
the DOS to identify two main transitions: these transitions are
apparent in the onset of relatively concave breakpoints
corresponding to collapses in the DOS. Between these phase
transition regimes, sequences split into multiple competing
subpopulations at a given critical selective pressure β (an
inverse temperature in a thermodynamic context). These
transitions are highlighted by peaks in the heat capacity; the
peaks correspond to high variance in sequence space as Gp2
variants transition from one basin of sequence space to
another. The expected values of (β, developability) corre-
sponding to these critical temperatures are (17.6, 1.3) and
(46.5, 1.8), respectively (Figure 8b). Note that these
developability predictions are Yeo-Johnson transformed;
these two developabilities, thus, correspond to 4.6 and 13.1
mg/L, respectively. This transition occurs with only 9.3 × 10−5

and 1.3 × 10−10 of all sequences predicted to have a higher
yield, respectively.

The output of NS can also be used to visualize the phase
space.44,45 Plotting the sequences in UMAP space shows a
single stalk of low developability sequences up to the first
phase transition where several high developability clusters exist
(Figure 8c,d). The split suggests that beyond the first phase
transition, there exists several distinct modes of achieving high
developability. A disconnectivity plot of the sequence space
was synthesized by creating a graph of nearest sequences of
higher yield in the DevRep embedding43−45 (Figure 8e). The
phase transition at the noted critical developabilities
corresponds to a sharp decrease in available sequence space
and branching occurs when subgraphs of sequences become
disconnected at a critical developability level.

We compared disconnectivity plots and UMAP landscapes
of the OneHot and UniRep paratope models’ embeddings
(Figure S5). Every model suggests at least one steep
contraction of configuration space corresponding to a basin
of similar sequences with high developability. The DevRep
landscape is the only embedding to show a large split of
sequence space into two competing basins. The OneHot
UMAP landscape appears to have sequences of various
predicted developability located at every UMAP location,

Figure 9. Assessment of DevRep suggested high developability variants. (a) Sequence embeddings identified through either NS (left) or SA (right)
strategies were clustered via UMAP (top) (note: we only show the DevRep embedding here). The highest predicted yield variants in each cluster
were equally sampled to determine 100 sequences. These variants represent a diverse set of sequences for experimental testing (bottom). (b)
Predicted developability distributions according to DevRep using equal intercluster sampling techniques across the sequence variants using different
embeddings as in (a). (c) UMAP visualization of top developability variants according to DevRep. Note that the UMAP visualizations of suggested
top developability variants for NS and SA in (a) are shown as aggregate in (c).
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confirming the OH embedding lacks easily interpretable
developability information. The UniRep paratope landscape
does show correlation between UMAP 1 and developability,
suggesting that there is some shared information between
UniRep’s embedding space and developability space.

Previously, we observed the importance of cysteine in
distinguishing developability sequences according to DevRep’s
embeddings (Figure 6). We hypothesized that restricting
cysteine mutations within NS would dramatically influence the
resulting sequence-developability landscape. We thus further
compared disconnectivity plots and UMAP landscapes of

Figure 10. DevRep enables design of developable protein variants. (a) The predicted versus actual developability of 280 Iq and 269 SH variants
identified via sampling strategies (see Figures 9, S6 and S7). (b) Sequences generated by each embedding and sampling strategy are compared to
each other and to a selection of randomly generated sequences. (c) An additional set of sequences identified via NS of DevRep and UniRep were
also compared. These sequences were designed to be more developable and more similar in embedding space. (d) Each sequence in (c) was
compared to the set of sequences with measured yield that was used during model training. The distribution shown is broken down by the model
used to generate the sequences.
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DevRep models’ embeddings when sampled sequences allowed
for either (i) at most one cysteine within a sequence or (ii) no
cysteine at all (Figure 8e). Indeed, we observe both the
disappearance of the second basin within the disconnectivity
plots and a significantly less developable final optimal sequence
as cysteine is more stringently restricted.
Generation and Experimental Validation of Top

Developability Variants. As a final test of the transfer
model approach to predict protein developability, we sought to
measure the ability to predict high developability variants.
Because we found that the Gp2 library splits into many
subgroups of sequences that can achieve high developability
(as it is also clearly visible from the multiple basins with high
developability in the corresponding disconnectivity graph, see
Figure 8e), we generated diverse sequences. We also identified
sequences using simulated annealing (SA)46 to compare
sampling strategies. The embeddings from each sampling
approach were reduced via UMAP and clustered via hdbscan
to identify sequences from clusters that are diverse in DevRep
space. We then equally sampled across each cluster to acquire
diverse high-yield variants. The most developable variants
equally sampled in each cluster were recorded to yield a total
of 100 final variants (Figures 9a and S6).

The same process was repeated using different embeddings
(OneHot and UniRep) for the paratope model. A randomly
generated set of sequences were also tested for comparison.
The predicted yields and different locations within sequence
space for the isolated sequence embeddings suggest that each
model has its own distinct maximum and underlying
approximation of developability space (Figures 9a and S6).

It was observed that including sequence diversity in the
selection scheme introduced lower developability variants.
Additionally, large clusters of high developability sequences
were observed in both DevRep and UniRep embeddings from
NS (Figure S6). Thus, for each model, the large high
developability cluster was split into subclusters where 100
additional variants were experimentally evaluated equally
spread across the high developability subclusters (Figure 10).
In total, 600 variants were thus proposed for experimental
characterization.

We measured the expression yield from the soluble fraction
of E. coli bacteria for 280 variants in the Iq strain and 269
variants in the SH strain. The DevRep model was the most
accurate in prediction of unseen sequences (Figure 10a).
Interestingly, both our control models outperformed the
UniRep-encoded model (Figure 10a) despite UniRep’s test
MSE beating that of our controls (Figure 7a). We believe that
this discrepancy could arise from UniRep having low test error
on low-to-medium developability of Gp2 candidates but
significantly fail to generalize highly developable candidates
relative to the spread of error of our controls.

We next assessed which model and sampling technique
identified the top-performing variants with additional focus on
diversity (Figure 10b). DevRep identified the highest yield
sequences (upper quartile developability: 0.76 for DevRep vs
0.27, 0.35, and −0.05 for OneHot, UniRep, and random,
respectively, in strain Iq and 1.34 vs 1.15, 1.01, and 0.61 in
strain SH; Figure 10b). NS was more effective than SA for
DevRep and UniRep but not OneHot embeddings in both
strains.

We then assessed the distribution of yields obtained with a
higher focus on developability than diversity (see Figure S7).
Again, both DevRep and UniRep embeddings were able to

select sequences with higher developability than a random
selection (Figure 10c). Additionally, DevRep was able to
identify the sequence with the highest developability in Iq. In
aggregate, we note the significant difference between the
distribution of high developability Gp2 variants between our
initial dataset used to train/test DevRep and the final
generatively suggested experimentally validated 549 Gp2
variants (Figure S8) to guide our Gp2 libraries toward higher
developability. Of final note, we found the sequences identified
in this final evaluation were significantly far (in terms of
Hamming distance) from variants evaluated during model
training. DevRep’s sequences were 9.5 (on average) amino acid
mutations away from the closest sequence during training
(Figure 10d).

These results display a promising utility of DevRep in terms
of both predictive accuracy and the ability to identify highly
developable variants over current state-of-the-art universal
sequence embedding techniques. Note that DevRep is specific
to modeling developability of a 12−16 residue paratope (viz.,
2016 possible variants) of 45,433 sequences, whereas these
universal sequence embedding techniques were originally
trained on up to only 3 orders of magnitude more sequences
to represent all possible sequences found in nature (i.e., x ≫
2016 possible sequences). That is, DevRep is significantly more
economical in its usage of protein variants relative to these
large universal models. Therefore, it is not surprising that
DevRep outperforms these universal models on our key task of
interest: predicting protein developability. Additionally, the
performance of both OneHot and UniRep embeddings and
sampling strategies suggests that these techniques could be a
useful first step in sequence identification, even prior to
experimentation. Finally, we found that the combination of
machine learning models with NS constitutes a promising
strategy for efficient and interpretable in silico directed
evolution of proteins.

While the current study only directly assesses Gp2, the
approach is readily transferable to other proteins given the
efficiency of the HT experimental assays and the availability of
the model code. As such, the approach is not limited by
protein or metric, although its performance has only been
demonstrated with Gp2 on the metric of recombinant yield.

We envision that the approach can fill an important void in
developability pipelines. One set of current approaches seeks
to establish measures of protein “druglikeness” analogous to
Lipinski’s “rule of 5”47 for small molecules.7,24 In these
methods, several developability metrics are measured either
experimentally7 or in silico24 across a set of clinically relevant
proteins. Candidate proteins are then compared against these
underlying distributions with scores that fall within heuristic
cutoffs begetting acceptance for further investigation. The
experimental approaches provide physical interpretability but
are currently low-throughput and preclude sequence-based
design, whereas the current computational methods are rapid
but would benefit from more robust performance. We
demonstrate transfer learning of focused HT experiments as
an efficient route to predictability and design.

Our outlined approach is generally applicable to protein
sequence-function datasets that comprise library-scale HT
proxy data on the order of 105 protein variants and gold
standard assay measurements (e.g., recombinant protein yield)
on the order of 102 that correlate well with the proxy assay.
Deep mutational scanning (DMS) datasets48−50 can readily
serve as suitable HT proxy datasets. We suggest that these
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extant DMS datasets can be quickly augmented via random
sampling and testing of protein variants using classical gold
standard assay measurements; which could be completed
efficiently. These augmented DMS datasets would be highly
amenable to analysis via our approach.

■ CONCLUSION
This work evaluated the ability of using HT developability
assays (proxies for a traditional metric) to learn an embedding
that is transferable to a predictive model of a traditional metric
(e.g., yield) for which only few data points are available (an
example of few-shot learning). We determined that this
strategy can overcome noise in the proxy assays and achieve
significantly better performance than alternatives. We then
analyzed the model’s predictions to identify unique modes of
achieving high developability based upon the location of
cysteine and the importance of hydrophobicity and charge.
The configuration space was explored via NS which identified a
range of developabilities where the sequences are highly
clustered and unique, suggesting that a series of sub-libraries
may outperform a single design. The transfer learning
approach outperforms models based on physiochemical or
evolutionary properties, thereby confirming that developability
is a complex and unique property and providing a combined
experimental/bioinformatics means to integrate developability
design into protein discovery and engineering.

■ METHODS
The following section contains a summary of relevant
information to perform the training, CV, and testing regimes
of DevRep and assessed benchmark embeddings, and statistical
mechanics generative modeling (sampling) protocols for
fitness landscape construction. Additional methods can be
found in the Supporting Information.
Hardware. Training, CV, testing, and generative modeling

(NS/SA) analysis was conducted using NVIDIA Tesla K40
GPUs provided by the Minnesota Supercomputing Institute
(MSI). For model development, a single K40 core was
assigned to each embedding model-top model pair for each
assessed task of first (i) HT assay prediction and then (ii)
protein recombinant yield prediction. For generative variant
modeling and analysis, a single K40 core was assigned to each
of 100 evolving sequence walkers to generate and examine
synthetic Gp2 mutants in parallel via a shared memory
scheme.51

Training Setup. All model development was conducted
using TensorFlow v2,43,52 scikit-learn v0.24.1,53 NumPy
v1.21,54 and Python v3.7.55 All sets of examined architectures
were trained using the Adam optimizer56 with learning rate
10−3, β1 = 0.9, β2 = 0.999, ε = 10−7. All to-be-trained
parameters over all layers for each examined architecture were
initialized via the Glorot Uniform scheme.57

For DevRep and our other in-house models, combinations
of embedding architectures (Table S1) and all top-models
(Table S2) were trained, validated, and tested on appropriate
splits of the 45,433 Gp2 variants following Supporting
Information Section 1.1 to simultaneously first (i) predict
the three optimal developability assays determined in previous
work17 and then (ii) predict protein recombinant yield.

For benchmark embedding models such as UniRep21 and
BERT,22,38 all benchmark embedding-top model architecture
pairs were fit only on our second and final task of protein

recombinant yield prediction. This focus on the second task
was conducted in the spirit of desiring to compare state-of-the
art universal protein embeddings on our primary task of
interest (yield prediction) versus that of our in-house transfer
learning approach. Additionally, UniRep full and paratope
embedding tuning was conducted in an evolutionary
evoUniRep scheme.21,41 Benchmark embedding sizes are listed
in Supporting Information Table S8.
Training Protocol. To train, we use Gp2 variants with

varying degrees of assay and protein recombinant yield label
information as determined from previous work17 and
extensively explained in Supporting Information Section 1.
Each set of assay and yield labels were normalized via a Yeo-
Johnson power transformation.58 For DevRep and our other
in-house models, all Gp2 sequences were first either OH or
ordinally encoded. Only the Gp2 paratope of length 12−16
amino acids was encoded; each paratope was always padded
with gap characters in positions 4,5 and 12,13 as needed to
obtain a 21 (20 canonical amino acids plus a gap character) ×
16 (positions) input matrix (for OH) or a 1 × 16 input vector
(for ordinal). Each Gp2 sequence’s strain (i.e., Iq [1,0] or SH
[0,1]) is distinguished as an additional concatenated 1 × 2
vector (OH) or 1 × 1 entry (ordinal) to the sequence
representation.

All benchmark embedding models such as UniRep41 and
BERT22 already have full protein embeddings. Thus, either the
45−49 full Gp2 variant sequence or 12−16 paratope Gp2
sequence were embedded for each examined benchmark to
produce a set of embeddings over the training set of consistent
input dimension size. For the augmented DeepSequence VAE
embeddings, we trained a DeepSequence VAE34 on homolo-
gous Gp2 variants as suggested by Hsu et al.35 This VAE then
inferred one ELBO “evolutionary density score” per Gp2
variant. This ELBO was then concatenated to full and paratope
one hot encodings. A 1 × 2 strain identifying OneHot vector
was appended to these benchmark representations. These
representations were then used to train all top models as listed
in Supporting Information Table S2 on our final and key task
of protein recombinant yield prediction.
Cross-Validation Protocol. Individual architectures were

validated via either Tensorflow52 or scikit-learn53 10 times via
k-fold CV; embedding architectures were evaluated using
Tensorflow (k = 3), whereas top models were evaluated using
scikit-learn (k = 10). The data within each assessed
architecture set (e.g., embedding strategy analysis) was
conserved. Hyperopt59 determined the optimal hyperpara-
meters for each architecture. Validation proceeded across
either 50 trials or a maximum of 24 h of computational time;
the trial with the lowest predictive error was recorded. The
hyperparameters that resulted in optimal performance of an
individual architecture pair within a set of embedding model-
top model pairs was saved as the embedding model-top model
architecture for each architecture pair in that examined set.
Tables S1 and S2 summarize the examined architectures across
all sets with respective maximum assessed hyperparameter
ranges.
Testing Protocol. All architectures within a given

embedding model-top model set were retrained with their
optimal hyperparameters on the entire CV training set. Held
out test data for each architecture set was used to examine each
architecture’s performance. This independent test set was not
used outside of examining architecture test performance.
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Metrics. All model training, CV, and testing performances
are determined via the MSE of relevant train, CV, and
independent test datasets. We additionally define a separate
metric of experimental variance: the SSE. This SSE is the
sequence-averaged trial-to-trial variance of a single assay or
yield (N = 3) measurement. Dividing the experimental
variance by N = 3 yields the experimental variance SSE. The
experimental variance SSE thus represents the minimum
possible observable performance of one of our models on
our dataset for our two tasks.
Generation of Hypothesized High Developability

Gp2 Variants. A set of 100 paratope sequences�known as
walkers�of length 16 were initialized via random selection of
all 20 amino acids at every position from a uniform
distribution. Gap insertions were further allowed at positions
4−5 and 12−13 to enable encoding of paratopes of total
lengths from 12 to 16 amino acids while yielding consistently
16 character sequences. If relevant, the assignment of cysteine
to a position was restricted during this initialization process.

These 100 sequences were then used as input to make
respective embeddings (e.g., DevRep’s 97-dimension paratope
embedding) and their predicted developability recorded from
the respective best top model for the embedding model.

After initialization, the sampling proceeds by first suggesting
a Monte Carlo step and either accepting or rejecting the step
according to the respective sampling criteria. In this proposed
step, each of k residues in each sequence are mutated with a
uniform probability from a pool of allowed amino acids. At the
start of sampling, k = 16 (all) positions in the sequence are
mutated and changes in stringency (k) are made based on an
arbitrary acceptance criterion. This acceptance criterion and
general approach vary between our NS43 and SA46 schemes,
detailed in Supporting Information Section 2.3.

The output of NS is a list of threshold developabilities (and
sequences) from which we can compute the DOSs, g(Y), and
from it all thermodynamic observables such as the average
yield, , heat capacity
C(β) = β2(⟨Y2⟩ − ⟨Y⟩2), entropy S(β) = β(⟨Y⟩β − F(β)),
and free energy where we
have taken kB = 1 everywhere. This information is then used to
construct basins of hypothesized highly developable Gp2
variants via disconnectivity graph generation and landscape
analysis, described in Supporting Information Section 2.4. In
total, 600 Gp2 variants were generatively suggested across our
top-performing in-house DevRep and benchmark (OneHot,
UniRep) embedding models with a balance between high
predicted developability (5/6) vs sequence diversity (1/6).
Experimental Validation of Generated Gp2 Variants.

Gp2 Oligopool. Oligopools (Twist Bioscience) were designed
to transform E. coli strains with plasmids encoding our 600
Gp2 variants as previously described.17

Note that while our oligopool attempted to produce all 600
Gp2 variants for each of our two strains, only 280/600 and
269/600 variants were characterized for the Iq and SH strains,
respectively. We hypothesize this discrepancy in attempted
versus successfully measured variants as arising from the
stochasticity inherent in sampling from a large combinatorial
space of potential oligonucleotides in our pool.
Gp2 Production and Dot Blot Inspection. Dot blot was

performed as a modified western blot with higher through-
put,17 detailed in Supporting Information Sections 3.4 and 3.5.
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