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Abstract 
Proteins can be engineered to perform a variety of functions ranging from 

diagnostics and therapeutics to industrial and commercial enzymes. The ability to 

computationally evaluate the performance of a protein from its amino acid sequence would 

increase the efficiency of discovery, expanding the impact of engineered proteins. 

However, the problem is plagued by the immensity, complexity, and barrenness of the 

amino acid sequence-function landscape. The following research is focused on predicting 

two nontraditional protein functions: 1) Evolvability - the ability to generate novel 

functionality based upon the mutation of a subset of amino acid positions, and 2) 

Developability - the ability to be efficiently manufactured and maintain primary 

functionality. Limited prior understanding of these functions was available across broad 

swaths of sequence space. This work advanced a hybrid experimental/computational 

platform to provide broad and deep experimental data on sequence-function relationship. 

Empowered by data analytics, the dataset enabled accurate predictions and provided 

mechanistic insight regarding protein evolvability and developability. The first story aimed 

to determine which computable biophysical properties drive evolvability. Utilizing high-

throughput screens for evolving specific molecular targeting, the performance of seventeen 

protein scaffolds were obtained for seven molecular targets. A model predicting 

evolvability from biophysical properties was trained, with a focus on generalizability and 

interpretability. Achieving a 4/6 true positive rate, a 9/11 negative predictive value, and a 

4/6 positive predictive value, the predictive model analysis suggests a large, disconnected 

paratope (location of sequence variation) will permit evolved binding function. The second 

story aimed to generate a model to predict protein developability, as determined by 

bacterial production, from amino acid sequence. As traditional metrics of developability 
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are often capacity limited (102 - 103), a set of three of high-throughput (105) assays were 

created to generate a sufficient dataset. The relevance of the assays to traditional metrics 

was certified by a model that predicts expression from assay performance 35% closer to 

the experimental variance and trains 80% more efficiently than a model predicting from 

sequence information alone. The validated assays offer the ability to identify developable 

proteins at unprecedented scales, reducing a bottleneck of protein commercialization. 

Neural networks were trained to generate a numeric developability representation 

(embedding) for each sequence from the high-throughput dataset and transfer the 

embedding to predict recombinant expression. Mimicking protein theory, our deep-

learning model convolves machine-learned amino acid properties to predict expression 

42% closer to the experimental variance compared to a traditional approach. Analysis of 

trained numeric encodings of the amino acids highlights the unique capability of cysteine, 

the importance of hydrophobicity and charge, and unimportance of aromaticity when 

aiming to improve developability of the protein scaffold Gp2. The completion of the 

studies supports the hypothesis that data-driven protein engineering can both accurately 

predict protein evolvability and developability while also providing meaningful insight into 

the properties driving functionality. The success of this approach is predicted to increase 

significantly as the capacity to parametrize protein function continues to grow. The 

research presents the increased ability to engineer proteins across their diverse sequence 

landscape using modern experimental techniques and data analytics.   
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Chapter 1 - Introduction 
1.1 Protein Diversity Enables Broad Functionality 

Proteins are composed of twenty canonical amino acids of various size, charge, and 

polarity. Anfinsen’s dogma states the order and type of amino acids determines the 

resulting three-dimensional structure, and thus the function, of the protein1. While simply 

stated, the combinatorics leads to an astronomical number of possibilities allowing proteins 

to serve numerous roles including: proteases (e.g.  trypsin found in digestive tracts2), 

lipases (e.g. BSK-L found as an additive in laundry detergent3), antibiotics (e.g. 

antimicrobial peptides found as a promising new avenue in fighting infections4), and 

molecular targeting agents (e.g. antibodies found in immune systems5,6). The field of 

protein engineering has emerged to modify existing proteins, or develop novel proteins, to 

achieve several goals including: increasing performance (e.g. increasing reaction 

efficiency and speed7), increasing specificity (e.g. limiting the reactivity of undesired of 

substrates and formation of undesired products8), developing novel function (e.g. 

activating a pathway to invoke self-destruction of a cancerous cell9), or increasing 

robustness (e.g. improving the self-life of an antibody used to activate the immune system 

for various treatments10). Thus, the ability to predict the function of a protein from the 

amino acid sequence will enable universal advancements.   

1.2 Protein Diversity Also Complicates Search for Optimal Sequences 

It is estimated that the average protein length ranges from 250 residues 

(archaebacteria) to 450 residues (eukaryotes)11. Assuming every amino acid can be 

substituted at every position, this results in 20250 - 20450 (10325 - 10585) unique combinations. 

Put into perspective, it is currently approximated that there are only 1011 stars in the Milky 

Way. Not only is it impractical to experimentally produce and assay every protein’s 
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function, even if it were possible to computationally predict function in a single floating-

point operation (FLOP), the world’s current fastest super computer (IBM’s Summit12) of 

200 petaFLOPs (2x1017 FLOPs) per second would take approximately 10430 years to 

compute all possibilities.  

Making the situation more complicated, it is believed that the landscape describing 

the relationship between protein sequence and function is barren (most sequences lack 

desired function) and rugged (a single substitution could drastically modify function)13. 

This is likely due to a network of residue-residue interactions created when the protein 

folds, resulting in a highly complex dynamical system. Thus, it is vital to develop efficient 

experimental techniques and computational models to navigate protein candidates. 

1.3 Rational Design Enables Protein Engineering with Limitations 

A common first approach at modifying a protein’s sequence is to design mutations 

utilizing some background knowledge of the protein and/or its function14. The most useful 

piece of information is often a three-dimensional representation (obtained by X-ray 

crystallography, nuclear magnetic resonance15, or electron microscopy16 experiments) of 

the protein in complex with the target or analogue that can allow visualization of potential 

mutations. As an example, Wells et al.17 improved the catalytic efficiency and specificity 

of subtilisin though targeted substitutions of charged amino acids after noticing potential 

ion pairs between the enzyme and substrate from a crystal structure. This process is often 

limited by the nontrivial ability to obtain accurate representations18, as well as the inability 

to fully predict how a substitution will affect other nearby residues. That being said, there 

has been success in creating ultra-stable proteins of various geometries through the use of 

rational design19, commenting on the ability to design more complex properties. 
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1.4 Random Mutagenesis Paired with Directed Evolution Expands Possibilities  

A more recent approach attempts to increase protein functionality by building in a 

feedback mechanism to select desired proteins and continue the search within a smaller 

vicinity. Championed by Frances Arnold20 and utilized by many, directed evolution has 

shown promise in improving the function of numerous proteins spanning from biocatalysts 

for biofuels21 to photoresponsive peptide ligands22. Direction evolution is comprised of 

three steps: 1) creating a library of protein variants though processes such as error-prone 

PCR or degenerate codon synthesis, 2) assaying the library for a desired function, and 3) 

isolating and amplifying the DNA encoding for the beneficial mutations. Depending on the 

performance of the isolated variants, this process can be repeated until the desired level of 

function is achieved. Compared to rational design, directed evolution does not require 

knowledge of protein structure or the mechanism of interactions. However, this process is 

heavily based upon the mutation strategy and can often result in local solutions rather than 

the ideal global solution23. This has led to the creation of more guided mutation strategies, 

including domain swapping and walking techniques24–27. But the benefit of not requiring 

knowledge for random mutation is also a limitation via the lack of ability to apply known 

information.  

1.5 Mechanistic Models Offer Limited Success with Poor Scalability 

The next approach to determine protein structure and function is to use first 

principal forces to calculate the most stable configuration. Software packages such as 

FoldX28 and Rosetta29,30 calculate properties such as electrostatic forces, entropic effects, 

and solvent interactions to determine the stability (ΔG) of the folded protein compared to 

the unfolded amino acid chain. However, to accurately calculate these properties, the 

packages must first find the most stable conformation of the backbone and the rotamer 
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position of the residue side chains. This task has a large geometric domain that often 

requires rounds of iteration and refinement leading to supercomputer-level requirements. 

Another approach is to use a homologue, or similar protein based upon sequence, to obtain 

an initial structure and then calculate the relative change in stability (ΔΔG) by mutating 

positions of interest. Unfortunately, this approach has similar limitations as rational design 

by requiring a structure of the homologue and is limited in accuracy with increasing 

distance from the starting point. It is also hypothesized these software contain 

training/validation bias due to datasets containing unbalanced data largely in favor of 

destabilizing mutations31.  

1.6 Protein Evolvability and Developability Are Uniquely Difficult Functions to 

Engineer 

The most common applications of the previously mentioned protein engineering 

strategies are to improve stability (specifically thermostability) and interaction strength 

(specifically binding affinity and catalytic power). These functions can often be 

rationalized by looking at the specific inter- or intramolecular interactions, possibility 

leading to higher success rates. However, not all protein functions are as straightforward. 

The work in this dissertation focuses on more abstract functionality including evolvability 

(the ability to create new function upon mutation of sequence) and developability (the ease 

of manufacturing and maintenance of function).  

In nature, proteins must perform the desired function and possess the ability to 

adapt new functionality to match changing stimulus and environment. Regarding 

engineered proteins, the ability to switch specificity (either binding or catalytic) by 

mutating a relatively small part of the amino acid sequence is commonly referred to as 

evolvability32. The field distinguishes innovability and evolvability as the ability to 
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generate new function and the ability to modulate existing function, respectively. Within 

this thesis, we use evolvability to refer to the ability to modulate function, without 

distinction on functional novelty. A common approach has been protein scaffolds, where 

it is hypothesized that the conserved (unmodified) portion of the protein will aid the 

identification of a useful sequence by providing a stabilizing region and providing a 

scaffolding (shape) that has been known to be functional in other applications33–38. It has 

been shown that a tradeoff exists between the rigidity of the backbone that provides 

stability and the flexibility of backbone that permits numerous mutated regions that may 

be required to obtain a desired function32,39,40. This nontrivial tradeoff is the focus of 

Chapter 2 of this dissertation. The increased stability of a parental protein often increases 

success41–43, due to most mutations being destabilizing44,45. However, as protein scaffolds 

exist is many sizes and shapes46, it is nonobvious what biophysical properties aid in 

maximizing evolvability. Understanding the properties of proteins that are correlated to 

evolvability could allow for the selection of more ideal scaffold rigidities easing the 

engineering effort to achieving a desirable functionality.  

Developability is an often overlooked property that describes the general ease of 

production, storage, and use of a protein without significant degradation47–49. While the 

previously mentioned stability is part of the developability equation, other properties such 

as solubility and production yield involve hard to predict interactions with the solvent and 

other cellular proteins. A study by Jain exemplified the importance of developability by 

noting a correlation between poor developability properties and the ability of the molecule 

to pass clinical trials.48 Accordingly, a slew of experimental techniques (e.g. AC-SINS50,51, 

and hydrophobic interaction chromatography52,53) and computational tools (Therapeutic 
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Antibody Profiler49, CamSol54, and Developability Index55) have been popularized. It is 

known that developability is best characterized by several properties56, and computational 

tools have mixed success rates57. This function is particularly challenging because most 

assays have limited throughput (100’s), which limits the confidence of any observed trends. 

Thus, it remains unknown if limited predictive capability is due to extreme complexity or 

due to limited ability to train a sufficient model. In this work, Chapter 3 is focused on 

identifying assays which increase assessment capacity while Chapter 4 is focused on 

utilizing the increased dataset to identify factors driving developability. The ability to 

engineer protein developability could remove a major hurdle in the commercialization 

pipeline and even increase the efficiency of the candidate selection process58.  

1.7 Data Science Aims to Identify Driving Properties  

It is often difficult to determine which amino acid and protein properties are related 

to the function of interest, particularly with evolvability and developability.  The field of 

data science has developed several tools to answer such questions including machine 

learning - which is aimed to narrow down a list of potential properties, and deep learning - 

which is aimed to teach itself important properties from the data59. Compared to the 

previously mentioned methods of protein engineering, the data science approach does not 

require as much structural information, sophisticated simulations, nor rely solely on 

random chance to discover beneficial mutations. Instead, this method of engineering 

requires a vast dataset which is then used to train a predictive model. The driving factors 

for function are then determined by analyzing model parameters and by analyzing 

predicted protein variants. For example, Alley and team trained a Unified Representation 

(UniRep) of natural proteins60. They assessed the trained parameters that directly 
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transformed each amino acid to a numeric vector and found residues located near each 

other with similar properties of charge and aromaticity - suggesting the importance of those 

properties. They also compared the numeric representation of proteins from various species 

and found that UniRep considered taxological data important when trying to predict protein 

sequences. While training of the models from data can be time consuming, the evaluation 

of proposed variants is often much faster than physical-based approaches. Data science has 

been applied to protein engineering to solve a myriad of functions including enzyme 

productivity and thermostability61,62. One major drawback in data driven studies is the data: 

as the utility of predictions and interpretations can only be as accurate and relevant as the 

input. Thus, the quality and quantity of the input dataset must always be questioned.  

1.8 Success of Data Science Approaches Require Relevant and Sufficient Data 

The leading limitation to applying machine learning and deep learning to protein 

engineering is the lack of useful training data. Depending on the type of question asked, 

models may need to fit 101 to 105 parameters to achieve sufficient accuracy. While some 

machine learning techniques are able to generalized when overparameterized63, its 

generally believed the current literature of protein functionalities lack sufficient depth. One 

strategy to overcome this limitation is to use databases of alternative functions for training, 

such as a list of proteins found in nature or in the Protein Data Bank64. It can be 

hypothesized that the natural proteins must all possess sufficient developability to have 

been discovered and training a model on such information will allow sufficient accuracy 

in the prediction of the developability metric. Though this strategy has shown success in 

predicting functions related to requirements to be useful in nature like stability60,65, it 

remains unclear if these training sets are relevant to evolvability and other metrics of 
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developability. Biswas and team was recently able to show the success of low-N protein 

engineering, but commented on the requirement of existing high-fidelity and throughput 

assays to measure protein fuction66.  

1.9 Contributions of Dissertation 

This dissertation addresses the hypothesis that if a relevant dataset of protein 

evolvability and developability is obtained, then data science approaches can be used to 

predict and interpret critical factors of the respective functions.  

1.9.1 Aim 1: Interpreting and Predicting Protein Evolvability 

In Chapter 2, a series of seventeen protein scaffolds varying in twenty biophysical 

properties were tested in their ability to evolve binding functionality. Using existing yeast 

display technology67, each scaffold was scored by the ability to create unique binders 

towards seven protein targets. A model was created, with appropriate techniques to limit 

redundancy and improve generalization, which revealed the importance of a large, 

spatially-independent paratope. We were then able to accurately assess an additional 700 

potential scaffolds for evolvability potential. The completion of this aim provides evidence 

focused high-throughput experiments paired with machine learning techniques can be 

employed on engineering protein evolvability within the context of protein scaffolds.  

1.9.2 Aim 2: Interpreting and Predicting Protein Developability 

We next focused on creating an amino-acid based model to predict protein 

developability for paratope variants of a specific protein scaffold. As previously 

mentioned, the large protein combinatorics requires a highly-parameterized model which 

requires a sufficiently sized dataset to train. As protein developability lacked assays 

capable of reasonably scaling beyond 102 - 103, Chapter 3 develops and validates three 
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high-throughput (105) developability assays and creates a database of sequence-based 

developability information. These assays (an on-yeast protease assay, a split GFP assay, 

and a split β-lactamase assay) represent progress towards eliminating the barrier of variant 

developability quantification in the protein commercialization pipeline.  Chapter 4 then 

determines if the high-throughput assay information can train a model capable of predicting 

a traditional developability metric from amino acid sequence that can also provide 

mechanistic insight. Through analysis of amino acid and protein numeric representations, 

the data demonstrate the unique impact of cysteine, which can form a stabilizing (and 

developability increasing) disulfide bond. Through analysis of conformational landscape 

exploration, we find a region of developability with a highly rugged landscape containing 

unique properties suggesting the existence of numerous beneficial sequence motifs. The 

completion of this aim provides both new methodology for developability analysis and 

evidence that deep-learning models can be trained for protein scaffold developability.  
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Chapter 2 - Biophysical Characterization Platform Informs 

Protein Scaffold Evolvability 
 

Adapted from “Alexander W. Golinski, Patrick V. Holec, Katelynn M. Mischler, and 

Benjamin J Hackel. ‘Biophysical Characterization Platform Informs Protein Scaffold 

Evolvability.’ ACS Comb. Sci. 2019, 21, 323−335.” 

2.1 Abstract 

Evolving specific molecular recognition function of proteins requires strategic 

navigation of a complex mutational landscape. Protein scaffolds aid evolution via a 

conserved platform on which a modular paratope can be evolved to alter binding 

specificity. Although numerous protein scaffolds have been discovered, the underlying 

properties which permit binding evolution remain unknown. We present an algorithm to 

predict a protein scaffold’s ability to obtain novel binding function based upon 

computationally calculated biophysical parameters. The ability of seventeen small proteins 

to evolve binding functionality across seven discovery campaigns was determined via 

magnetic activated cell sorting of 1010 yeast-displayed protein variants. Twenty topological 

and biophysical properties were calculated for 787 small protein scaffolds and reduced into 

independent components.  Regularization deduced which extracted feature best predicted 

binding functionality, providing a 4/6 true positive rate, a 9/11 negative predictive value, 

and a 4/6 positive predictive value. Model analysis suggests a large, disconnected paratope 

will permit evolved binding function. Previous protein engineering endeavors have 

suggested that starting with a highly developable (high producibility, stability, solubility) 

protein will offer greater mutational tolerance. Our results support this connection between 

developability and evolvability by demonstrating a relationship between protein 
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production in the soluble fraction of E. coli and the ability to evolve binding function upon 

mutation. We further explain the necessity for initial developability by observing a 

decrease in proteolytic stability of protein mutants which possess binding functionality 

over non-functional mutants. Future iterations of protein scaffold discovery and evolution 

will benefit from a combination of computational prediction and knowledge of initial 

developability properties.  

2.2 Introduction  

 Proteins have evolved to empower a broad array of functionality. While minimal 

amino acid mutations can yield dramatic enhancements in functional performance via 

evolution13,68, discovery of completely new function typically requires greater leaps in 

sequence39. Given the relative barrenness and tortuosity of sequence space13, efficient 

strategies are needed to achieve successful de novo discovery. One strategy to facilitate 

discovery is the use of a protein scaffold33,37 comprising a conserved framework to provide 

biophysical robustness and a variable active site to provide diverse function. One particular 

function, molecular recognition via binding ligands, has ubiquity in natural biology and 

broad technological utility in targeted molecular therapies69 and diagnostics34. A functional 

protein ligand scaffold must be able to create new, specific binding function upon mutation 

of the paratope70 and possess optimal developability properties (e.g. stability, solubility, 

and expression) for downstream use.48 To date, numerous protein scaffolds have been 

engineered to obtain strong affinity towards clinically relevant targets71,72, while some have 

entered clinical trials.73–76 Protein scaffolds offer novel topologies and differential size, 

allowing for unique binding interfaces and tunable pharmacokinetic properties.46,77 The 

diversity of topologies and physicochemistries of published scaffolds, and the paucity of 
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data on unsuccessful scaffolds, preclude an understanding of the biophysical features 

which allow the development of binding functionality. Thus, to advance the understanding 

of de novo protein discovery and evolution, as well as to advance technological capability 

for ligand engineering, we sought to develop a platform to elucidate the factors that dictate 

scaffold performance and to identify new scaffolds. 

Previously established scaffolds have been discovered based on an evolutionary or 

mechanically themed hypothesis. The use of antibodies69, antibody fragments35, and 

leucine-rich repeats78 presumed that their natural function for high affinity binding will 

serve as a starting point for scaffold engineering. Fibronectin type III ‘monobodies’79 and 

designed ankyrin repeat proteins80 are structurally similar to these immune scaffolds. 

Lipocalins81, three-helix bundle affibodies82, fynomers83, and others46 offer unique 

topologies with native binding ability. Alternatively, multiple scaffolds are chosen for their 

strong structural stability including cystine knots84 and thermophilic affitins85 and 

homologs. Similarly, a host of other scaffolds have provided compelling performance in 

ligand development while others have been tested without the same level of success.80 A 

comparison of potential scaffolds was recently performed, which identified the Gp2 

scaffold for its small size, adjacent, solvent-exposed loops with significant surface area, 

and stability tolerance.71 However, a rigorous evaluation of the properties that permit 

protein scaffold function, now enabled by advances in high-throughput screening and 

sequencing, has yet to be performed.  

Herein, we propose an iterative discovery and evaluation platform for new protein 

scaffolds in which we computationally characterize biophysical properties of scaffold 

topologies and experimentally evaluate binder evolution (Figure 1). Parameter selection 
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techniques are then employed to assess predictive characteristics of functional scaffolds. 

In this paper, computationally-derived stability and topology parameters were used to 

identify the first predictive model of protein scaffold function, which can be used to 

identify future successful protein scaffold candidates. Additionally, experimental 

characterization of scaffold developability suggests stable and producible proteins yield 

improved binder evolution to combat a tradeoff between stability and new binding 

function. The findings in the study suggest a combination of developability and biophysical 

metrics should be used to identify future protein scaffolds.  

 

Figure 2.1 - Algorithm for protein scaffold discovery 
Small proteins deposited in the Protein Data Bank are analyzed for structural, chemical, and predicted 

stability parameters. Proteins for experimental evaluation are chosen via a proposed model to predict binding 

performance. Protein scaffold libraries consisting of millions of unique variants are expressed with 

diversified binding interfaces. Binding function is evaluated against several molecular targets to determine 

which proteins evolve specific binding variants. The observed binding performance is then used to adjust the 

predictive model. Iterative evaluation can be performed. 
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2.3 Results and Discussion 

2.3.1 Computational Scaffold Analysis 

We hypothesize that not all proteins possess the characteristics to robustly and 

efficiently develop novel binding function upon mutation. To advance the understanding 

of scaffold properties that dictate evolvability, and to reduce the experimental burden of 

identifying new scaffolds or improving existing scaffolds, we aim to advance a 

computational/experimental framework to evaluate binding evolvability of candidates. We 

hypothesize that a combination of topological and biophysical parameters can be used to 

provide insight on performance. 

We focused the current study on small (<65 amino acids), single-domain proteins 

for multiple reasons. Small proteins provide improved physiological transport and rapid 

clearance of unbound molecules for enhanced selectivity.86 Small, single-domain 

architecture eases fusion and site-specific conjugation for multifunctional constructs. Small 

size reduces exposed surface area that may lead to undesired non-specific interactions. 

Moreover, small size heightens the challenge to simultaneously balance evolution of 

intramolecular stability and intermolecular binding87,88, which makes it a strong test case 

for evolution. Multiple types of protein structure can be used for diversification of a binding 

paratope including loops79,89, α-helices42,90, β-strands91, and mixed topologies80,81. 

Although the impact of entropic cost upon binding92,93 – relative to more constrained 

paratope structures –  remains difficult to accurately access, the conformational flexibility 

of loops suggests this secondary structure will be most accepting of mutagenesis.94 Thus, 

we sought proteins with at least two enclosed loop regions each with at least four residues 

for diversification. 
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The >100,000 proteins in the Protein Data Bank (PDB) were (1) filtered for size 

(30-65 AA pre-trimming) and the presence of two loops with at least four residues. 787 

unique protein scaffolds were (2) demarcated into conserved frameworks and diversifiable 

paratopes and (3) characterized by twenty parameters describing geometrical, chemical, 

and stability properties (summarized in Table 1 and the following text and described in 

depth in Materials and Methods). Protein Connectivity. We hypothesized that the 

connectivity of residues would impact protein stability, leading to the calculation of inter-

residue contact degree (total and long-range) and contact order95.  Paratope Connectivity. 

Paratope connectivity and flexibility, the latter via normal mode analysis96, was also 

calculated as we believed spatially-removed diversifications will be less destabilizing to 

the remainder of the protein. Conserved Surface Area Chemical Nature. As for the 

conserved framework, the amount and chemical nature of exposed residues are likely to 

affect the ability of proteins to withstand destabilizing mutations. PyMOL97 was used to 

model the protein surface and calculate the chemical nature of the solvent accessible 

surface area (SASA). Paratope Size and Topology. Paratope orientation was parameterized 

by spatial and angular separation to capture the potential additivity of the two paratope 

loops. Paratope size and shape were described by measuring the properties of the 2D and 

3D binding interface. Computational Stability. It is proposed that scaffolds must be stable 

and have mutational stability to maintain structural integrity when obtaining binding 

function. The FoldX empirical forcefield was used to estimate mutational destabilization 

and overall stability.28 The amount of buried non-polar surface area was also estimated as 

a relationship with stability was recently observed for small proteins.98 General Scaffold 

Properties. We propose the amount of new SASA introduced by cleaving termini may 
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introduce destabilizing exposed surfaces. Termini without secondary structure were 

removed from experimental and computational analysis except in the calculation of new 

SASA. We also included descriptions of the amount of common secondary structure and 

total residues. Small protein topologies exhibit a broad range of values for these 20 

parameters (Figure 2R), which provides potential utility for scaffold differentiation. 17 

candidate scaffolds (Figure 2A-Q), which provide a range of characteristics (Figure 2R), 

were chosen for experimental evaluation.  

Table 2.1 - Evaluated descriptors of protein scaffolds 

Factor Description Mean±SD (n=787) 

Protein Connectivity  

Contact Degree Total number of residue contacts within 8Å 920±270 AU 

Contact Order Sum of contact sequence separation divided by size and contact degree 0.38±0.01 AU 

Long Range Contact Degree Number of residue contacts with sequence separation >12 divided by 

size 

11.8±3.1 AU 

Paratope Connectivity 

Paratope Contact Degree  Total number of residue contacts within 8Å between a paratope and 

conserved residue 

430±140 AU 

Paratope Contact Order  Sum of paratope contacts sequence separation divided by paratope size 

and contact degree 
1.2±0.4 AU 

Paratope Stiffness  The average stiffness of the paratope in an anisotropic network model -0.28±0.39 AU 

Conserved Surface Area Chemical Nature 

Charged SASA Conserved solvent accessible surface area of D, E, K, R 980±430 Å2 

Hydrophobic SASA Conserved solvent accessible surface area of A, F, G, I, L, M, P  790±340 Å2 

Polar SASA Conserved solvent accessible surface area of C, H, N, Q, S, T, W, Y 780±360 Å2 

Paratope Size and Topology  

Paratope Angle  [Paratope 1 : entire scaffold : Paratope 2] angle based upon centers of 
volume 

110±30o 

Paratope SASA  The solvent exposed surface area of an alanine-scanned paratope region 780±360 Å2 

Paratope Separation The distance between the center of volumes of the paratopes 16±6 Å 

Projected Paratope Area Two-dimensional projected area of the paratope in the orientation of 

maximum area 
74±25 AU 

Projected Paratope Perimeter  Perimeter of the projected area of the paratope in the orientation of 
maximum area 

1.2±0.4AU 

Computational Stability  

Buried NPSA  The amount of buried non-polar surface area upon folding 2700±900 Å2 

FoldX DDG Mean difference in stability from parental across 50 variants  17±12 kJ/mol 

FoldX Energy Mean energy of 50 NNK variants using FoldX’s forcefield 35±25 kJ/mol 

General Scaffold Properties 

New SASA  The amount of solvent exposed area created when removing 
unstructured termini   

320±260 Å2 

Secondary Structure Percent  The percent of residues in an 𝛼-helix or 𝛽-sheet  51±12 % 

Size  The total number of residues in the scaffold  47±7 AA 
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Figure 2.2 - Protein scaffold candidates show varying binding performance 
A-Q. The 17 assayed protein scaffolds with conserved region colored gray and variable paratope colored red. 

R. 787 protein scaffolds of 30 – 65 amino acids with two solvent-exposed loops were computationally 

analyzed for 20 topological and biophysical factors (Table 1). The z-score distributions across all scaffolds 

are depicted by the box plots (box: 25th – 75th percentile; center bar: median; whiskers: 1.5 x interquartile 

range). The plotted values for each of the 17 assayed scaffolds indicate a diversity of proteins were assayed.  

S. A pooled sample of 1x1010 variants across 17 scaffolds was enriched for binding variants in seven 

campaigns. MACS sorting was performed until seven binding populations were identified towards diverse 

molecular targets. Positive selection sorts (bold molecular target) were completed after two depletion sorts 

of the other listed targets. Binding functionality, quantified here as increased relative yield over control beads, 

was observed in all campaigns. T. The relative binding performance for each scaffold against each molecular 

target as determined by the difference in scaffold abundance from the initial population to the binding 

populations. Scaffold abundance combines unique variants and variant binding strength using exponential 

dampening of sequence counts. Inset: The initial abundance of each scaffold. Error bars represent standard 

error (n=3). 

2.3.2 Scaffold Binding Evaluation  

To evaluate scaffold evolvability, we performed de novo discovery of binding 

ligands from a merged combinatorial library of all 17 scaffolds. Combinatorial libraries 

were genetically synthesized in which the two paratope loops were diversified with 8-17 

(mean 11.3) ‘NNK’ degenerate codons, which enable all 20 natural amino acids. The gene 
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libraries were transformed into a yeast surface display system to robustly produce scaffold 

variants, which yielded 3-9x108 variants per scaffold. The 17 scaffold libraries were mixed 

resulting in a total diversity of 1x1010 protein variants. Deep sequencing revealed that the 

synthesized library matched design with only 1.2% median deviation from NNK diversity 

and a 1.1% framework mutation rate.  

The pooled library was sorted to identify specific binding ligands to a panel of 

diverse proteins: luciferase, CTLA4, avidin, PD-1, green fluorescent protein, R-

phycoerythrin, and vascular endothelial growth factor. Four to five rounds of magnetic 

activated cell sorting were used to deplete non-specific binders and enrich selective 

binders. Maximum diversity of the sequenced population, estimated by the lowest-yielding 

sort with each cell containing a unique variant, ranged from 3,500-715,000 per campaign. 

Enriched populations exhibited selective binding (Figure 2S) and were deep sequenced to 

characterize scaffold variants. 280,000 (range 1,250-115,000 per campaign) full-length 

reads were obtained yielding 21,000 (range 160-9,000 per campaign) unique binding 

variants. Individual campaign sorting and sequencing statistics are summarized on Table 

S1. With oversampled sorting, enrichment is correlated with binding affinity.99 MACS 

sorts were performed with at least 10-fold diversity of yeast, allowing for differential 

recovery among clones of various binding strength. While our depth of sequencing did not 

fully sample the theoretical diversity, the differential frequencies of obtained variant reads 

suggests the obtained results reflect the differential affinities of the assayed scaffold 

variants. The overall binding performance of a scaffold was calculated as the mean 

difference in normalized abundance between the final and initial binding populations after 

transforming (quartic-root dampening100) sequence frequencies to combine the binding 



19 

strength and the number of unique binding variants. It should be acknowledged that the 

binding performance metric in this study is dependent on the performances of the other 

tested scaffolds, and only provides a relative comparison between scaffolds. To define a 

threshold value of performance, a binding performance of -0.006 was determined to best 

classify experimental binding performance by the ability to develop a strong binding 

variant (Figure S1).  

The assayed protein scaffolds possessed a range of ability to evolve novel binding 

function upon paratope mutations (Figure 2T). Five scaffold libraries failed to contain 

binding variants in any campaign: scaffolds C, F, and I maintained a near-neutral score as 

the starting abundance was rare whereas scaffolds G and Q performed comparatively worse 

as each sequence had more potential to find binding variants. Scaffolds D and L produced 

binders to a single target. Yet, the binding was not strong relative to other binders, which 

rendered the scaffolds’ overall performances as poor. Libraries of scaffolds A, B, E, H, J, 

K, M, N, O, and P contained binders to more than one target, with A, E, H, J, K, N, and O 

producing binders with sequences that occupied ≥1% of the reads for a campaign (Figure 

S2). Scaffolds J, H, O, and P increased abundance in at least one campaign, but overall 

yielded a negative performance (i.e. depletion in frequency upon evolution).  

Four scaffolds (A, E, K, and N) yielded an increased abundance across the study 

(Figure 3). Scaffolds A, E, N had an increase in normalized abundance above 0.1 in two or 

more campaigns. Scaffold A, a binding subunit of the chaperone protein calreticulin with 

a relatively extended fold exposing both diversified loop regions, was found in all binding 

campaigns. Scaffold E, an RNA polymerase inhibitor, presents a pair of solvent-exposed 

loops on one end of a scaffold in which a single -helix packs across from a -sheet. This 
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topology, recently identified via scaffold mining71, has been validated as a protein scaffold 

and serves as a positive control for this experiment. Scaffold N, an actin-binding protein 

presenting a pair of loops between three relatively small helices, obtained binding function 

in six campaigns with only 9 diversified sites. Scaffold K, an antifungal protein, dominated 

the fourth binding campaign and comprises three interacting β-sheets. These scaffolds offer 

diverse options for ligand evolution and provide, along with analysis of the other scaffolds, 

a means by which to evaluate the impact of topological and biophysical parameters on 

scaffold evolvability. 

 

Figure 2.3 - Successful protein scaffolds have diverse topologies 
The identity, natural function, structure, and sequence of the top performing scaffolds are presented. The top 

proteins have various amounts and types of secondary structure. Diversified paratope residues are colored 

red in both the primary sequence and PyMOL rendering of the protein. Strikethroughs in the sequence 

represent residues present in the solved structure that were removed in our experimental analysis (as 

unstructured termini).  

We would like to acknowledge a few limitations in the analysis of scaffold 

performance using the employed methodology in the experiment. Scaffold libraries may 

under- or over-perform their overall evolvability for multiple reasons. The diversified sites 

may not be optimal as evolution can be aided by conservation of loop sites101 and 

diversification of sites with secondary structure adjacent to paratope42,101. Full amino acid 
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diversity is not optimal for evolution at many sites.42,101Yet the library designs that 

optimally balance intramolecular stability and intermolecular binding potential are not 

evident a priori. Thus, for consistency of scaffold evaluation, this common diversification 

strategy was employed. Additionally, assessing binding functionality via multivalent 

MACS with multivalent yeast display only requires moderate affinity. As our ability to 

identify functional scaffolds increases, modifying the selection stringency may modify 

scaffold performance and associated predictive parameters. There are several potential 

sources of variability in the experiments. Illumina preparation could have PCR bias102; 

however, initial library sequencing identified all scaffolds and our evolvability metric 

accounts for differences in initial abundance, which mitigates this issue. Additional 

differences in initial abundance could be explained by differential library construction 

efficiency. Severe undersampling of the theoretical 1016 variants yields potential 

stochasticity; however, the depth and breadth of evolved binders (21,000 unique 

sequences) provides a generalizable result. Finally, it is observed that not all scaffolds 

perform equally for all targets. The use of seven campaigns addresses this concern, and 

future experiments may benefit from further increasing campaign breadth. 

2.3.3 Identifying Functional Scaffold Properties 

To evaluate a generalizable impact of topological and biophysical parameters on 

scaffold evolvability, a tandem independent component analysis (ICA) and elastic net 

regularization protocol was performed. Given the extensive resources required to evaluate 

numerous scaffold performances, we sought to predict performance from our limited 

dataset while avoiding overfitting. Briefly, the 20 calculated factors for 787 potential 

scaffolds were z-transformed and subsequently whitening transformed by principal 
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component analysis to determine orthogonal metavariables which describe variability 

between scaffolds in lower dimensional space and remove correlation (Figure S3). Six 

scaffold features were then reconstructed using ICA to identify underlying independent 

factors describing protein scaffolds (Figure S4). The six independent components for the 

17 assayed scaffolds were then fed into an elastic net regularization to determine predictive 

descriptions of scaffold binding performance. Regularization penalizes the norm of term 

coefficients, removing terms which do not aid predictive power. The technique isolated 

two components which best reduced a leave-one-out (LOO) root mean squared error 

(RMSE) in predicting scaffold performance (Figure 4A & S4). The final model was 

composed of a constant term, to account for bias in the definition of scaffold performance, 

and two independent components. The most predictive model successfully identifies 4 of 

the 6 functional scaffolds above the determined threshold. 9 of the 11 scaffolds predicted 

to be less evolvable indeed fit that description. Yet the model does result in false positives 

for 2 of 6 scaffolds 

 

Figure 2.4 - Large disconnected paratopes are associated with increased binding 

performance 
ICA analysis was completed to describe the independent features of protein scaffolds. Elastic net 

regularization was performed to determine which of the features predicted binding performance. The 
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resulting linear model was composed of two independent components and a constant term yielding a LOO 

RMSE of 0.06. A. The LOO prediction of scaffold binding performance obtained a 4/6 true positive rate, a 

9/11 negative predictive value, and a precision (positive predictive value) of 4/6. Classification threshold was 

determined by ability to evolve a strong binding variant. B. The predictive model is a linear combination of 

the twenty calculated parameters and a constant term. The coefficients describe which parameters to modify 

to improve binding performance of a small protein scaffold. 

By distributing the weights of the independent components in the model back onto 

the calculated biophysical parameters, we can hope to obtain a physical understanding of 

what predicts scaffold success. Based upon the linear model term coefficients, the predicted 

model suggests generally decreasing scaffold connectivity, paratope connectivity, 

conserved exposed surface area, buried non-polar surface area, FoldX energy, secondary 

structure, and size (Figure 4B). It also suggests increasing paratope 2D and 3D surface 

area, 2D perimeter, and exposing new surface area upon removal of unstructured termini. 

While an exact interpretation of the model is complex, a general trend appears to suggest 

a large, disconnected paratope may predict increased binding performance. The 

distribution of binding performance of all predicted scaffolds can be found in Figure S5. 

While several approaches to identify predictive biophysical parameters could have 

been utilized, we identified what we believe to be the most compelling approach utilizing 

underlying features of protein scaffolds. For thoroughness, we also tested a similar 

approach utilizing principal components – which best describe differences between 

scaffolds – yielding a comparable outcome in terms of predictability and parameter insight 

(Figure S6). Both models agree on reducing protein and paratope contacts, minimizing 

conserved SASA, and increasing paratope SASA yet differ in the impact of paratope 

stiffness, FoldX energy, and new SASA. In a third approach, each individual parameter 

was analyzed to determine predictive performance. The top two predictive models in terms 

of minimizing LOO RMSE also suggest a decrease in conserved polar SASA or an increase 

in paratope SASA.  
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2.3.4 Paratope Analysis 

We sought to analyze the characteristics of the evolved scaffold variants to 

illuminate any trends which may aid in future paratope design. We first asked if the binding 

variants for each scaffold were closely related in sequence space by plotting the distribution 

of pairwise Hamming distances for each scaffold. (Figure 5A). A paratope size normalized 

Hamming distance of 1 represents a completely unique paratope by position. A distance 

less than 1 represents variants with more similar paratope motifs. Based upon Hamming 

distance, only 2 of 12 binding scaffolds significantly reduced the sequence space from their 

initial distribution (p<0.05, one-tailed Kolmogorov–Smirnov Test with Bonferroni 

correction for multiple comparisons).  The similar Hamming distance distribution between 

the initial and binding populations provides evidence that the populations have roughly the 

same extent of diversity. The decreased distance for some scaffolds suggests that not all 

sequence space is functional in developing novel binding function for some scaffolds but 

proves the results of our assay are not dominated by single binding motifs. Additionally, 

the mutational rate of the conserved residues of the binding proteins was 5% (relative to 

1.1% in the naïve library), suggesting some mutations outside of the paratope may benefit 

binding evolution. 
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Figure 2.5 - Binding variants describe functional amino acid space 
A. The diversity of sequenced variants based upon matched residues per position. NNK distribution was 

estimated via 5000 random NNK paratope-diversified sequences with a 1/1000 chance of framework 

mutations (Q30). The Hamming distance was then summarized by 20 bins based upon the number of 

mismatched residues per paratope size. Error bars represent standard deviation of Hamming distance 

frequencies across scaffolds (n=17 for NNK and Initial, n=12 for Binding). B. The change in amino acid 

frequencies of binding variants relative to the initial library for all paratope sites across all scaffolds.   

We then analyzed the evolution of paratope composition to assess the impact of 

particular amino acids on the creation of binding function (Figure 5B). Tryptophan and 

tyrosine, increased by 12% and 3%, respectively, have been previously reported to interact 

specifically across many interfaces due to the ability to partake in different bonds including 

pi-stacking, hydrogen-bonding, and cation-pi interactions.103–105  Arginine, which often 

serves as a hot-spot residue for key interactions but has also been previously associated 

with non-specific interactions, increased by 3%.103–105 Glycine increased abundance by 3% 

perhaps by adding flexibility to the loop regions.106 Proline increased in abundance by 2%, 

perhaps by improving scaffold stability by reducing the conformational entropy of the 

unfolded state.106 Interestingly, serine has previously shown to be upregulated in binding 

variants, but was greatly reduced in this study.103–105 The raw abundance for each residue 

in the various sequencing populations is depicted in Supplemental Figure 7. 
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2.3.5  Developability Impacts Scaffold Performance 

In addition to evolving novel binding function upon mutation, the developability of 

a protein scaffold is also important for utility as a molecular targeting agent. We define a 

developable protein to possess high producibility, stability, solubility and other usability 

factors. While the preceding experimental evolution did not directly select for 

developability, we sought to provide an introductory analysis of developability metrics of 

the studied scaffolds. We produced protein scaffold variants recombinantly in E. coli to 

determine if recombinant yield was predictive of scaffold performance (Figure 6). Parental 

proteins, evolved binding variants, and random variants from the naïve library were 

expressed via pET plasmids in T7 Express E. coli. The identification of soluble protein was 

performed via PAGE gel analysis, FPLC purification, and anti-His tag ELISA. We found 

that modifying temperature and time of induction impacted protein yield for producible 

clones but did not recover any poorly produced proteins. 

 

Figure 2.6 - Limited protein producibility highlights the importance of scaffold 

developability 
Each scaffold is classified by the ability to develop a strong binder (abundance >1% in at least one campaign) 

and the parental protein producibility (ability to produce in T7 E. coli in detectable soluble yields). If 

applicable, the producibility of scaffold variants are shown as # produced / # attempted. 

Based upon the detection of parental protein in the soluble fraction of T7 E. coli, 

scaffolds whose parental protein is effectively produced in the soluble fraction have a 
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higher probability of evolving a strong binding variant (one-tailed two-sample proportion 

test, p=0.057). Under the hypothesis that proteins expressed must be stable, have low 

aggregation propensity, and readily fold, this data suggests that well-behaved proteins will 

serve as a better starting point for scaffold development. Additionally, the data recommend 

that protein scaffolds should be derived from highly developable proteins, rather than 

engineering developable parameters post-identification of binding functionality. 

Interestingly, the ability of a parental clone to produce was not indicative of variant 

producibility (p = 0.3). 

2.3.6  Proteolytic Stability 

We then sought to characterize the stability of scaffold variants on the surface of 

yeast, where binding function was observable and more complex protein production 

machinery exists. Using proteinase K, flow cytometry, and deep sequencing, the relative 

proteolytic stability of 1,300 unique scaffold variants were determined by analyzing the 

amount of protease required to cleave the distal epitope tag on a yeast surface displayed 

scaffold variant (Figure 7A).  The method could be influenced by protein aggregation 

protecting variants from cleavage. Notably, the scaffold A parental variant was resistant to 

cleavage yet found in multimeric states on PAGE gels and mass spectrometry upon 

recombinant soluble expression. Nevertheless, this high-throughput analysis informs on 

stability as recently validated.98 



28 

 

Figure 2.7- Proteolytic stability assay identifies stability requirement for binding 
A. Protein scaffold variants were exposed to various levels of proteinase K and sorted based on degree of 

cleavage on the surface of yeast. The slope of the protease resistance (i.e. collection bin) versus protease 

concentration is correlated to protein stability. B. The proteolytic stability of the parental scaffold is correlated 

to the binding performance of the scaffold. (Note: n.d. for Scaffold K). C. Violin plot comparing stabilities 

of naïve variants and binding variants. A Wilcoxon one-tailed signed rank test indicates that binding variants 

are less stable than naïve variants (p = 0.034). 

We first examined the stability of the parental variants for each scaffold and 

observed a positive correlation with the scaffold’s binding performance during MACS 

sorting (Spearman’s ρ = 0.56, p<0.05; Figure 7B). The shape appears to suggest a threshold 

of stability is required to obtain high binding performance. We then tested the hypothesis 

that the stability of random diversified variants could correlate to parental protein stability. 

We measured the stability of an average of 60 variants per scaffold (range 14-73; Figure 

S8). A large range of stabilities were observed among the naive variants without any 

evident correlation with parental stability (Spearman’s ρ = 0.43, p = 0.1). This outcome 

could be explained by the substantial diversification of the initial pool, which is likely to 

contain variants both close and far from the parental clone. 
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A final comparison was performed between stabilities of naïve variants and binding 

variants for each scaffold. Interestingly, the protease stability of binding variants is 

significantly lower than that of non-binding variants (One-tailed Wilcoxon signed-rank test 

on set medians, p=0.034; Figure 7C). This suggests there is a trade-off between binding 

functionality and stability, as previously hypothesized.39,43  

Paired with the relationship between parental protease stability and scaffold binding 

function, we hypothesize that protein scaffolds with high protease stability will more 

efficiently evolve binding variants because they can ‘sacrifice’ stability while remaining 

folded. This suggests that the search for future protein scaffolds should first involve a 

comprehensive study of protein stabilities and expression. This additional test may aid in 

the differentiation of proteins with otherwise similar biophysical properties when 

predicting evolvability as protein scaffolds.  

2.4 Conclusion 

The current study develops a computational-experimental platform to identify 

successful protein scaffolds and provides insight on the topological and biophysical 

parameters that dictate evolvability. However, the ability to develop specific binding 

function is not enough for a scaffold to be useful in downstream applications. The stability 

and producibility of the proteins also determine scaffold utility. Interestingly, these 

developability factors also correlate to binding evolvability of the protein scaffold. Future 

work in this field should combine the predictive biophysical model and the observed 

relationship between protein stability and scaffold functionality to narrow the assayed 

candidates. 
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We also note that this method of computationally calculating biophysical 

parameters of proteins to relate to desired functionality is applicable beyond protein 

scaffold identification. A similar analysis could be completed to determine predictive 

performances of protein developability metrics, enzyme efficacy, and anti-microbial 

peptide activity. The current limitation in such studies is the collection of a sufficiently rich 

dataset to build a robust computational model. 

2.5 Experimental Procedures 

2.5.1 Scaffold Parameter Calculation 

Protein Data Bank files were obtained for files containing a protein chain ranging 

from 30 and 65 amino acids. Chains were then parsed for unique sequence and secondary 

structure as determined by the depositor. Paratope loop regions were assigned as 

continuous stretches of at least four amino acids without secondary structure. Terminal 

amino acids were removed if located at 3 or more residues from the outer most secondary 

structure. Homemade Python scripts were then used to calculate 20 parameters. Scripts are 

available online on GitHub: https://github.com/HackelLab-UMN.   

Protein Connectivity. We hypothesize that a more connected protein is correlated 

to increased stability but decreased mutational stability. The distances between residue β-

carbons (or α-carbon for glycine) are measured for all residues in the terminal-trimmed 

protein. Residues with Euclidian distances  8 Å are considered contacts, consistent with 

ranges found in literature.95 Three parameters are calculated: (1) contact degree: the total 

number of contacts;  
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𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝐷𝑒𝑔𝑟𝑒𝑒 =  ∑ ∑ {
1     ‖𝐴𝐴𝑖 , 𝐴𝐴𝑗‖

2
≤ 8Å 

 
0     𝑒𝑙𝑠𝑒                           

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

(2) contact order: the sum across all contacts of the difference in primary sequence index, 

normalized by contact degree and the total number of residues;  

𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑂𝑟𝑑𝑒𝑟 =

(∑ ∑ {
𝑗 − 𝑖      ‖𝐴𝐴𝑖 , 𝐴𝐴𝑗‖

2
≤ 8Å 

 
0             𝑒𝑙𝑠𝑒                           

𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 )

𝑁 ∗ 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝐷𝑒𝑔𝑟𝑒𝑒
 

and (3) long range contact degree: the number of contacts with difference in primary 

sequence index greater than 12, normalized by the total number of residues.  

𝐿𝑜𝑛𝑔 𝑅𝑎𝑛𝑔𝑒 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝐷𝑒𝑔𝑟𝑒𝑒 =

(∑ ∑ {
1     ‖𝐴𝐴𝑖 , 𝐴𝐴𝑗‖

2
≤ 8 Å & j − i > 12  

 
0     𝑒𝑙𝑠𝑒                                                    

𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 )

𝑁
 

Paratope Connectivity. We hypothesize that less connected and more flexible 

paratopes will be more accepting of diversification required to obtain binding function by 

limiting the destabilization of the entire protein. Contacts were calculated between paratope 

residues and conserved residues within 8 Å. Normal mode analysis107,108 was used to 

estimate the flexibility of the paratope as determined by its connectivity to the remainder 

of the protein. Three parameters are calculated: (4) paratope contact degree: the number of 

contacts between a paratope residue and a conserved residue;  

𝑃𝑎𝑟𝑎𝑡𝑜𝑝𝑒 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝐷𝑒𝑔𝑟𝑒𝑒

=  ∑ ∑ {
1     ‖𝐴𝐴𝑖 , 𝐴𝐴𝑗‖

2
≤ 8Å & AAi ⊕ 𝐴𝐴𝑗 ∈ 𝑝𝑎𝑟𝑎𝑡𝑜𝑝𝑒 

 
0     𝑒𝑙𝑠𝑒                                                                             

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1
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(5) paratope contact order: the sum of paratope contacts’ difference in primary sequence 

index, normalized by paratope contact degree and the number of paratope residues; 

𝑃𝑎𝑟𝑎𝑡𝑜𝑝𝑒 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑂𝑟𝑑𝑒𝑟

=

(∑ ∑ {
𝑗 − 𝑖     ‖𝐴𝐴𝑖 , 𝐴𝐴𝑗‖

2
≤ 8Å & AAi ⊕ 𝐴𝐴𝑗 ∈ 𝑝𝑎𝑟𝑎𝑡𝑜𝑝𝑒 

 
0           𝑒𝑙𝑠𝑒                                                                             

𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 )

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑃𝑎𝑟𝑎𝑡𝑜𝑝𝑒 ∗ 𝑃𝑎𝑟𝑎𝑡𝑜𝑝𝑒 𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝐷𝑒𝑔𝑟𝑒𝑒
 

 (6) paratope stiffness: the average of the z-score transformed mean mechanical stiffness 

spring constant of paratope residues’ α-carbon calculated by an anisotropic network 

model96 - high  stiffness suggests a less flexible and more connected residue.  

Conserved Surface Area Chemical Nature. We hypothesize that the type of 

conserved exposed surface area will affect protein scaffold stability. The solvent accessible 

surface area (SASA), as determined by the radius of a water molecule in PyMOL, was 

summed for each residue based upon chemical nature. Chemical categorization led to three 

parameters: (7) charged (D, E, K, R) SASA: which may aid in protein stability by creating 

surface intramolecular salt bridges; (8) hydrophobic (A, F, G, I, L, M, P,V) SASA: which 

is likely destabilizing due to the entropic cost of solvation; (9) polar (C, H, N, Q, S, T, W, 

Y) SASA: which may contribute to stabilization in polar solvents. 

Paratope Size and Topology We hypothesize that two large and spatially close 

paratope regions will maximize the binding surface and increase the total energetics of 

binding towards the molecular target. Three parameters were based upon 3D structural 

data: (10) paratope angle: the [paratope 1 : entire protein : paratope 2] angle based upon 
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the atomic center of volume; (11) paratope SASA: calculated after mutating all paratope 

residues to alanine in PyMOL; (12) paratope separation: the distance between atomic 

center of volumes of the paratopes.  A 2D projection, created by modifying PyMOL’s depth 

cue, fog, and lighting, was also used for two 2D parameters: (13) projected paratope area: 

the sum of the pixels containing the paratope residues’ projection; (14) projected paratope 

perimeter: the number of paratope pixels boarded by a non paratope pixel. To obtain the 

2D projections, the protein was rotated to determine the projection with the maximum area 

of the paratope. The background and conserved residues are colored black with the epitope 

colored white. A ray-traced image is populated, and the pixel intensity is counted using 

Python’s Image Library. Both area and perimeter were normalized by the pixel area of a 

pseudoatom placed at the center of the paratope regions. 

Computational Stability We hypothesize that protein stability will impact 

mutational tolerance43 and sought to computationally estimate stability based upon existing 

correlations. Three parameters were calculated: (15) buried non-polar surface area (buried 

NPSA)98: the sum of solvent exposed non-polar amino acids in Gly-X-Gly109 minus the 

sum of solvent exposed non-polar amino acids in the fold protein; (16) FoldX DDG: the 

mean difference in force field energy between mutant and parental variants; (17) FoldX 

Energy: the mean force field energy of predicted scaffold mutants. For FoldX calculations, 

50 variants randomly selected from an NNK distribution were simulated by FoldX 428, 

which is sufficient to obtain a 5.1% average coefficient of variation (n=3 sets of 50 

variants).  

General Scaffold Properties We hypothesize that additional factors which are not 

explicitly included in categories above may also impact scaffold performance. Three 
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factors were included: (18) new SASA: the amount of new SASA of scaffold residues after 

unstructured tails are removed; (19) secondary structure percent: the percentage of scaffold 

residues categorized as part of an α-helix or a β-sheet; (20) size: the number of residues in 

the scaffold after removal of non-secondary structured termini.  

2.5.2 Binder Discovery 

We first sought to select proteins with small size, strong computed mutational 

stability, large and spatially proximal paratopes, minimal newly exposed SASA upon 

terminal trimming, and a small ratio of perimeter2 to area for the projected paratope. The 

weights assigned to each factor were randomly assigned and 24 scaffolds were selected for 

testing from the 619 initial candidates: 8 containing α-helices, 8 containing β-sheets, and 8 

containing both secondary structures. 24 scaffolds were chosen to balance breadth of 

parental proteins and experimentally achievable depth of scaffold variants. 7 of the 24 

synthesized libraries had less than 3/10 clones match design and were removed from the 

study. Genetic combinatorial libraries were synthesized to encode for the 17 scaffolds with 

full amino acid diversity at the paratope sites encoded via NNK codons. Oligonucleotides 

for these libraries were purchased from LabGenius. Genes were amplified via PCR (200 

µL, 1 µM primers, 200 µM dNTPs, 10 U Taq Polymerase, 1X ThermoPol Buffer, 0.5 µM 

template gene, 30 cycles) and concentrated via ethanol precipitation with PelletPaint 

(Millipore Sigma). Yeast display plasmid providing an N-terminal Aga2p, an HA epitope, 

a flexible (G4S)3 polypeptide linker, and a C-terminal AU5 epitope (pCT-AU5), was 

produced in NEB5α E.coli (New England Biolabs) and purified via silica spin column 

(Epoch Life Science) according to manufacturer’s protocol. The vector was linearized via 

restriction digest with NdeI, PstI-HF, and BamHI-HF (New England Biolabs). Digested 
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vector was ethanol precipitated and resuspended in deionized water. For each scaffold, 6 

µg digested vector and all ethanol concentrated genes were transformed into S. cerevisiae 

yeast (EBY100) via homologous recombination. Transformation followed previously 

described protocols110, with the addition of 30% v/v PEG 8000 in step 39, which was found 

to increase transformation efficacy.111 Transformed sequence diversity was estimated by 

dilution plating onto selective media assuming all transformants were unique. Anti-AU5 

antibodies failed to isolate full length display constructs; thus, nonsense sequences were 

obtained during sequencing, but omitted from analysis. 

The 17 scaffold yeast libraries were grown and induced as previously described110, 

and 10x the transformed diversity of each sub-library was mixed to create a pooled library. 

For each round of magnetic-activated cell sorting (MACS) induced yeast were rotated with 

magnetic beads for 2 hours at 4oC and placed on a magnet for 5 minutes to isolate binding 

variants. Each round of MACS consisted of depletion sorts on two negative targets 

followed by enrichment on positive target beads. For depletion sorts, non-binding yeast 

were collected for the next sort and binding yeast were plated for quantification. For 

enrichment sorts, the bound yeast were collected and grown for subsequent rounds. Yeast 

binding to both positive and negative target beads were washed with 1 mL PBSA (1X 

phosphate buffed saline with 1g/L bovine serum albumin; once for the first two rounds and 

thrice for additional rounds) and resuspended in selective growth media. A diluted fraction 

was plated for quantification. Positive selectivity (more yeast binding to positive target 

beads relative to negative target beads) was found after four to five rounds of MACS-based 

upon plated recovery.  
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A variety of protein targets were used to represent the diversity of potential 

molecular targets of protein scaffolds. Biotinylated green florescent protein (GFP), and 

Gaussia princeps luciferase (Luciferase) were purchased from Avidity. Biotinylated human 

PD-1 extracellular domain and human CTLA4 extracellular domain were purchased from 

G&P Biosciences. Biotinylated R-phycoerythrin (PE) was purchased from AssayPro. 

Biotinylated human VEGF121 was purchased from ACROBiosystems. Protein targets 

were either added to Dynabeads Biotin Binder (ThermoFisher) or Dynabeads M-270 

Carboxylic Acid beads, as described below. For selections on carboxylic acid beads, 

counter-sorts included bare carboxylic acid beads, tris(hydroxymethyl)aminomethane 

(Tris) - quenched carboxylic acid beads, or Dynabeads Protein A (ThermoFisher). For 

selections on avidin-coated Biotin Binder beads, counter-sorts included bare avidin beads 

and biotinylated goat IgG (Rockland Immunochemical) on avidin beads. 

Campaigns 1-3 were completed with 16.5 pmol/bead biotinylated protein targets 

conjugated to avidin beads. Campaigns 4-7 were completed with 33 pmol/bead targets 

conjugated to avidin beads for the first and third round, and to carboxylic acid beads for 

the second and fourth rounds (and fifth round for campaign 4). Campaigns 1, 5, 6, and 7 

isolated binders towards luciferase, GFP, PE, and VEGF121, respectively. Campaigns 2, 

3, and 4 isolated binders towards CTLA4/Avidin, PD 1/Avidin, and CTLA4/Tris. Though 

binding was observed towards two molecules, the specificity over a third negative target 

signifies an enriched population with binding functionality. For avidin-based sorts: 10 µL 

beads were mixed with 5 or 10 µL of 3.3 µM target in 100 µL PBSA; beads were rotated 

at room temperature for 1 hour, isolated via magnet, aspirated, and washed with 1 mL 

PBSA before cells were added to the tube. For carboxylic acid sorts: manufacture’s two-
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step coating protocol (without NHS) was followed except the following modification: 2 

µL of beads were used for each target to match total beads to avidin sorts.  

2.5.3  Evaluation of Binder Performance via Deep Sequencing 

DNA encoding for scaffolds was isolated from yeast using zymolyase (Zymo 

Research). Briefly, 1x108 cells are incubated in 200 µL lysis solution (50 mM phosphate 

buffer, 1M sorbitol, 10 mM β–mercaptoethanol, 75 U/mL zymolyase longlife) for 30 

minutes at 37ºC after which DNA is extracted via silica spin column.  PCR addition of 

Illumina adapters was performed to sequence scaffold genes in the initial and binding pools 

using Illumina MiSeq. Sequences were filtered using PANDASeq112 with a confidence 

threshold value of 0.9 for primer and assembled reads. Scaffold identification was 

completed via homemade MATLAB scripts available on GitHub. Briefly, sequencing 

reads were translated, and filtered for sequences matching 70% of the (G4S)3 linker and 

AU5 tag. The scaffold was identified by sequences of the same length and 70% match of 

conserved residues. Unique sequence counts were based upon translated sequences.  

Three independent sequencing runs of the initial unsorted pool were completed, 

with at least 10,000 scaffold variants identified in each sample. The distribution of paratope 

residues reasonably matched the intended NNK diversity (median absolute deviation: 

1.2%; Figure S7).  The conserved residues had a mutational rate of 1.1%. To determine the 

distribution of sequences analyzed, the Hamming distance was calculated between all 

observed sequences. Comparison to computationally simulated NNK sequences indicated 

diverse sequence sampling with 15 of 17 libraries not significantly more clustered in 
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sequence space than designed (Figure 4, P>0.05, one-tailed Kolmogorov–Smirnov test 

with Bonferroni correction for multiple comparisons).  

Binding populations were individually barcoded and sequenced, yielding 280,000 

full length reads across the seven binding populations. The binding performance of each 

scaffold is a function of the number of unique binders and the strength of binders. However, 

utilizing the raw read counts leads to descriptions of binding pools dominated by the 

strongest binding variants. One such method of combining diversity and binding 

functionality is exponential dampening.100 Therefore, the number of reads for each unique 

sequence was quartic root dampened (a subjective balance to reward clonal performance 

while dampening dominant clones to provide information from diverse clones), and the 

abundance of a scaffold is the total fraction of dampened reads per molecular target.  

𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 (𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑 𝑋) =  
∑ 𝑅𝑒𝑎𝑑𝑠 𝑜𝑓 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

𝑖

1
4𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑓𝑜𝑟 𝑠𝑐𝑎𝑓𝑓𝑜𝑙𝑑 𝑋

𝑈𝑛𝑖𝑞𝑢𝑒 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖=1

∑ 𝑅𝑒𝑎𝑑𝑠 𝑜𝑓 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒
𝑖

1
4𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 𝑓𝑜𝑟 𝐴𝑙𝑙 𝑆𝑐𝑎𝑓𝑓𝑜𝑙𝑑𝑠

𝑈𝑛𝑖𝑞𝑢𝑒 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖=1

 

To account for differences in starting abundance, the final binding performance 

metric was calculated as the mean difference in abundance for the seven scaffolds. It should 

be noted the binding performance metric is dependent on the other scaffolds assayed, yet 

still provides a relative performance between scaffolds. To estimate a threshold value of 

useful binding performance, scaffolds were classified by the ability to develop a high 

affinity binding variant with >1% campaign abundance (A,E,H,J,K,N,O). A receiver 

operating characteristic curve was used to determine a binding performance threshold of -

0.006 (Figure S1 & S2).  



39 

2.5.4  Evolutionary Model 

With more calculated parameters than experimental datapoints (i.e. scaffolds), we 

sought to reduce the scaffold parameter space and avoid overfitting of a predictive model. 

We believe that some calculated parameters may be correlated and hypothesized we could 

describe the scaffolds using a smaller dimensional space of underlying features. 

Reconstructive independent component analysis (ICA) attempts to identify features by 

separating the dataset into mutually independent latent variables.113 ICA requires a 

whitening transformation of data to remove correlation, which was achieved via principal 

component analysis (PCA). PCA can be used to reduce dimensionality by describing 

scaffolds with orthogonal metavariables, which removes low order correlations.114 

Broadly, ICA describes features of protein scaffolds, whereas PCA describes features that 

best differentiate protein scaffolds. 

The calculation of the parameters was finalized and calculated for 787 protein 

scaffold candidates via scripts available on GitHub. All parameters were calculated via a 

deterministic algorithm with a singular result per scaffold, except for FoldX calculations 

described above which were performed on random library variants. Principal components 

were then calculated via singular value decomposition using the pca function in 

MATLAB’s Statistics and Machine Learning Toolbox. The first six components, which 

individually explained at least 5% of the variance in scaffold parameters with a sum of 

80% total explained variation, were retained to predict scaffold performance (Figure S3). 

Independent components were then obtained via a modification of ICA with a 

reconstructive cost using the rica function in MATLAB (Figure S4). 
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We then sought to determine which of the independent components best predicted 

scaffold binding performance. Regularization is a technique used to remove parameters 

which are not predictive of a desired characteristic.115 A penalty term included in the 

objective function, associated with the norm of term coefficients, prevents overfitting of 

data by driving the coefficients of noisy inputs to zero. The six independent components 

for the 17 experimentally tested scaffolds were used to predict the observed binding 

performance using the MATLAB regularization function lassoglm with leave-one-out 

estimation of deviance. Elastic net regularization was performed with various penalty 

calculations of the L1/L2 norm (α=0.01, 0.1 0.25, 0.5, 0.75, 1) and maximum number of 

model terms allowed (DFmax= 1-6). The performance of the regularization output was 

tested via leave-one-out prediction of the assayed scaffolds. The model with the lowest 

root-mean-squared-error of binding performance prediction was identified. MATLAB 

scripts for ICA/PCA analysis and regularization can be found on GitHub. The ability of 

the predictive model to identify functional scaffolds was based upon the threshold 

determined by the ability to develop strong binding variants. 

2.5.5  Protein Production 

Genes encoding for observed and parental scaffold variants were obtained from 

Twist BioScience. Genes were ligated into pET production plasmids with a C-terminal His6 

tag and transformed into T7 Express Competent E. coli (New England Biolabs) following 

manufacturer’s protocol. Cells were induced at 37ºC for 2 hours with 0.5 mM isopropyl β-

D-1-thiogalactopyranoside, pelleted and frozen. The cells were then lysed in (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES) lysis buffer (50 mM HEPES, 

5mM CHAPS, 25 mM imidazole, 2 mM MgCl2, 20 mM NaCl, 7 U/uL benzonase, 50 
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mg/mL lysozyme, EDTA-free protease inhibitor, and 5% v/v glycerol) and incubated at 

37oC for 30 min before centrifugation and isolation of the soluble fraction. Protein 

purification was performed using HisTrap HP columns on an ÄKTAprime plus (GE 

Healthcare) with wash buffer (20mM HEPES, 500 mM NaCl, 20 mM imidazole, pH 7.4) 

and elution buffer (20 mM HEPES, 500 mM NaCl, 500 mM imidazole) flowed at 1 

mL/min.  

To quantify protein via ELISA, 100 µL of soluble lysate fraction was incubated in 

a 96-well plate overnight at 4 ºC, washed 4x with 0.05% v/v Tween 20 in PBS via squirt 

bottle and patted dry. Plates were incubated in 100 µL of 0.1 µg/mL Anti-6X His tag HRP 

antibody (ab1187, Abcam) in PBS for 1 hour at room temperature, washed 4x, treated with 

100 µL of 3,3',5,5'-tetramethylbenzidine (TMB) for 15 minutes, followed by 100 µL of 

TMB Stop Solution (ThermoFisher). His-tagged protein abundance was measured via 

absorbance at 450 nM using a plate reader.  Known purified biotinylated protein was spiked 

into lysate without His-tagged protein to quantify the limit of detection: 2 mg protein per 

liter of bacterial culture.  

Identification of produced protein was obtained via PAGE gel with and without 

nickel column purification, or an Anti-His6 ELISA performed compared to a non-His 

tagged control protein. NuPAGE Bis-Tris Gels were used to identify the addition of a 

protein at the expected molecular weight based upon protein standard following 

manufacture’s protocol. 
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2.5.6 Proteolytic Resistance 

Genes encoding for observed and parental scaffolds were transformed into a yeast 

surface display construct with N-terminal HA and C-terminal V5 epitope tags (PCT-V5) 

as described above, except gene preparation was performed via 400 µL PCR using Phusion 

polymerase (New England Biolabs). 1x106 yeast induced to display protein were incubated 

in 50 µL PBSA with 0, 4x10-6, or 22x10-6 U/µL proteinase K at 37ºC for 10 minutes, and 

immediately washed with cold PBSA. Epitope tags were labeled with chicken anti-HA 

antibody (ab9111, Abcam) and mouse anti-V5 antibody (ab27671, Abcam) followed by 

AlexaFluor488-conjugated goat anti-chicken IgY (H+L) (Thermo Fisher Scientific) and 

AlexaFluor647-conjugated goat anti-mouse IgG (H+L) (Thermo Fisher Scientific). 

Labeling was performed as follows: 1x106 cells were rotated for 30 minutes at room 

temperature in 50 µL of PBSA with 1 ng/µL primary antibodies, pelleted at 8000g for 1 

minute, aspirated, washed with 1 mL PBSA, incubated for 20 minutes at 4ºC in 50 µL 

PBSA with 1 ng/µL secondary antibody; pelleted, washed, and resuspended at 2x107 

cells/mL in PBSA for florescence activated cell sorting (FACS).  Cells were sorted into 

four gates (bins) based upon C-terminal:N-terminal epitope signal ratio, with a low ratio 

suggesting full cleavage of the protein. Collection bin 3 corresponds to intact protein, and 

collection bin 0 corresponds to fully cleaved protein. 

Scaffold plasmids were extracted with zymolase and PCR amplified with extension 

to add Illumina adapters as described above. Two experimental replicates were sorted and 

separately sequenced using Illumina HiSeq, and processed using USearch116 by filtering 

for a maximum 5% error rate per read and matching to ordered proteins. The mean 

collection bin of each protein was calculated for all three protease concentrations. For fully 
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displayed proteins without protease, a line was fit with a fixed intercept corresponding to 

the no-protease collection bin. A zero slope indicates no decrease in mean collection bin 

(epitope signal ratio) with increasing protease concentration and suggests protease 

stability. The normalized deviation (magnitude trial difference average/range) across trials 

is 0.11 (Figure S9).  
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2.4 Supplemental Information 

Table S2.1 - Sorting and Sequencing Summary 

Campaign 1 2 3 4 5 6 7 

Maximum Diversity 

by Sorting Yield 
140,000 5,000 3,500 3,900 715,000 220,000 7,500 

# of Reads Obtained 64,542 115,519 45,359 1,381 51,367 1,251 6,137 

# of Unique 

Sequences Obtained 
4,012 8,969 4,864 214 2,403 162 431 

Most Abundant 

Sequence Reads 
34,630 27,611 7,140 327 18,460 775 4,242 

 



44 

 

Figure S2.1 - Calibration of Binding Performance 
Protein scaffolds were classified by the ability to produce a strong binding variant (campaign abundance 

>1%, see Supplemental Figure 2). Left. The ROC curve used to determine a threshold value of binding 

performance (difference between mean abundance in binding populations and abundance in initial 

population). A value of -0.006 was chosen to optimize true discoveries and minimize false discoveries. Right. 

The ability for the predictive model to correctly classify protein scaffolds also utilized this definition. 

Scaffold functional classifications are as described above.  

 

 

Figure S2.2 - Bubble plot of scaffold performance against each molecular target 
Sequences were binned by abundance within campaign, which each bin represented a bubble. The number 

of unique sequences represented per bin is proportional to the bubble area2. Histogram bins were calculated 

via MATLAB’s automated algorithm to best display the distribution of the data. 
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Figure S2.3 - Principal component analysis 

The variability of the 20 calculated scaffold factors for 787 proteins were described by principal components. 

6 components were included in further analysis as they individually described at least 5% of variability 

individually with a sum of 80% variability.   
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Figure S2.4 - Independent component analysis 
Six reconstructed independent components (IC) were obtained via MATLAB’s rica function following 

whitening via principal component analysis. After regularization, ICs 1 and 6 were found to be correlated 

with scaffold binding performance. 
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Figure S2.5 - Predicted scaffold performance 
A. A histogram of all potential scaffold performance of the 787 calculated scaffolds. Note: as binding 

performance was a comparative metric, the predicted binding performance simply describes relative scaffold 

binding performance. B. The top predicted scaffolds are displayed with large paratope regions. A full list of 

scaffold parameters can be found on GitHub (HackelLab-UMN). 

 

 



48 

 

Figure S2.6 - Alternative predictive models 
The predictive performance and biophysical parameters are displayed for various approaches. For principal 

component analysis, the 6 components were fed into elastic net regularization, yielding a single principal 

component which predicted binding performance. Additionally, each of the individual parameters were used 

to predict performance. The top two predictive properties included a minimization of conserved polar SASA 

or a maximization of paratope SASA. 
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Figure S2.7 - Amino acid abundance across all protein scaffold paratopes 
NNK: theoretical NNK codon. Initial: unsorted library. Binding: sorted binding population. Data are 

presented as the mean ± standard error of n=3 initial pools and n=7 binding pools. 
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Figure S2.8 - Proteolytic stability comparison 
The proteolytic stability of parental proteins and an average of 60 naïve variants per protein scaffold were 

measured on the surface of yeast. A range of stabilities were observed for each scaffold. There is no 

significant correlation between parental stability and naïve variant stability. Marker represents median with 

error bars drawn to the 10th and 90th percentile of naïve proteolytic stability. 
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Figure S2.9 - Proteolytic stability of yeast-displayed proteins 
Protease stability is determined by the amount of protein cleavage with increasing protease concentration. 

Two technical replicates of flow cytometry were completed, and the protein stability is reported as the 

average from each trial. A. The error between trials decreases for more observed proteins. B. A majority of 

the scaffolds showed less than 0.05 error in protease stability between trials. C. The total distribution protease 

stability.  Values above zero indicated less cleavage with increasing protease and are likely due to error. 
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Chapter 3 - High-Throughput Developability Assays Enable 

Library-Scale Identification of Producible Protein Scaffold 

Variants 
Adapted from “Alexander W. Golinski, Katelynn M. Mischler, Sidharth 

Laxminarayan, Nicole L. Neurock, Matthew Fossing, Hannah Pichman, Stefano 

Martiniani, and Benjamin J. Hackel. ‘High-Throughput Developability Assays Enable 

Library-Scale Identification of Producible Protein Scaffold Variants.’ PNAS, June 8, 2021, 

118 (23) e2026658118.”  

3.1 Abstract 

Proteins require high developability - quantified by expression, solubility, and 

stability - for robust utility as therapeutics, diagnostics, and in other biotechnological 

applications. Measuring traditional developability metrics is low-throughput in nature, 

often slowing the developmental pipeline. We evaluated the ability of ten variations of 

three high-throughput developability assays to predict the bacterial recombinant expression 

of paratope variants of the protein scaffold Gp2. Enabled by a phenotype/genotype linkage, 

assay performance for 105 variants was calculated via deep sequencing of populations 

sorted by proxied developability. We identified the most informative assay combination 

via cross-validation accuracy and correlation feature selection and demonstrated the ability 

of machine learning models to exploit nonlinear mutual information to increase the assays’ 

predictive utility. We trained a random forest model that predicts expression from assay 

performance that is 35% closer to the experimental variance and trains 80% more 

efficiently than a model predicting from sequence information alone. Utilizing the 

predicted expression, we performed a sitewise analysis and predicted mutations consistent 
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with enhanced developability. The validated assays offer the ability to identify developable 

proteins at unprecedented scales, reducing the bottleneck of protein commercialization.   

3.2 Significance Statement 

Poor protein developability is a critical hindrance to biologic discovery and 

engineering. Experimental capacity limits variant analysis. We demonstrate the ability of 

an on-yeast protease assay, a split GFP assay, and a split β-lactamase assay to predict 

recombinant protein production yields in bacteria. The assays presented increase the ability 

to measure protein developability by more than 100-fold over traditional approaches. 

Compared to models trained using sequence information alone, the assays are 35% more 

accurate and require 80% less data to achieve the same prediction accuracy as sequence-

based models. The assays were evaluated via randomized protein variants within a protein 

scaffold topology and offer a method to remove the limitation of variant developability 

quantification. 

3.3 Introduction 

A common constraint across diagnostic, therapeutic, and industrial proteins is the 

ability to manufacture, store, and use intact and active molecules. These protein properties, 

collectively termed developability, are often associated to quantitative metrics such as 

recombinant yield, stability (chemical, thermal, and proteolytic), and solubility48,49,56,117,118. 

Despite this universal importance, developability studies are performed late in the 

commercialization pipeline117,118 and limited by traditional experimental capacity47. This 

is problematic because: (i) proteins with poor developability limit practical assay capacity 

for measuring primary function, (ii) optimal developability is often not observed with 

proteins originally found in alternative formats (such as display or two-hybrid 
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technologies119), and (iii) engineering efforts are limited by the large gap between 

observation size (~102) and theoretical mutational diversity (~1020). Thus, efficient 

methods to measure developability would alleviate a significant bottleneck in the lead 

selection process and accelerate protein discovery and engineering. 

Prior advances to determine developability have focused on calculating 

hypothesized proxy metrics from existing sequence and structural data or developing 

material- and time-efficient experiments. Computational sequence-developability models 

based on experimental antibody data have predicted post-translational modifications120,121, 

solubility122,123, viscosity124, and overall developability49. Structural approaches have 

informed stability125 and solubility55,122. However, many in silico models require an 

experimentally solved structure or suffer from computational structure prediction 

inaccuracies126. Additionally, limited developability information allows for limited 

predictive model accuracy127. In vitro methods have identified several experimental 

protocols to mimic practical developability requirements (e.g., AC-SINS51 and chemical 

precipitation128 as metrics for solubility). However, traditional developability 

quantification requires significant amounts of purified protein. Noted in both fronts are 

numerous in silico and/or in vitro metrics to fully quantify developability48,56.  

We sought a protein variant library that would benefit from isolation of proteins 

with increased developability and demonstrate the broad applicability of the process. 

Antibodies and other binding scaffolds, comprising a conserved framework and diversified 

paratope residues, are effective molecular targeting agents33,36,46,77,129. While significant 

progress has been achieved with regards to identifying paratopes for optimal binding 

strength and specificity42,130, isolating highly developable variants remains plagued. One 
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particular protein scaffold, Gp2, has been evolved into specific binding variants toward 

multiple targets26,71,131. Continued study improved charge distribution132, 

hydrophobicity133, and stability26. While these studies have suggested improvements for 

future framework and paratope residues (including a disulfide stabilized loop), a poor 

developability distribution is still observed134 (Figure 1a,b). Assuming the randomized 

paratope library will lack similar primary functionality, the Gp2 library will simulate the 

universal applicability of the proposed high-throughput (HT) developability assays. 

 

Figure 3.1 - High-throughput (HT) assays were evaluated for the ability to identify 

protein scaffold variants with increased developability. 
a,b) Gp2 variant expression, commonly measured via low-throughput techniques such as the dot blot shown, 

highlights the rarity of ideal developability. c,d) The HT on-yeast protease assay measures the stability of the 

protein of interest (POI) by proteolytic extent. e,f) The HT split-GFP assay measures POI expression via 

recombination of a genetically fused GFP fragment. g,h) The HT split β-lactamase assay measures the POI 

stability by observing the change in cell growth rates when grown at various antibiotic concentrations. i,j) 

Assay scores, assigned to each unique sequence via deep-sequencing, were evaluated by predicting 
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expression (see Figure 3). k,l) HT assay capacity enables large-scale developability evaluation and can be 

used to identify beneficial mutations (see Figure 4).   

We sought HT assays that allow protein developability differentiation via cellular 

properties to improve throughput. Variations of three primary assays were examined: 1) 

On-yeast stability (Figure 1c,d) - previously validated to improve the stability of de novo 

proteins98, antimicrobial lysins135, and immune proteins136 - measures proteolytic cleavage 

of the protein of interest (POI) on the yeast cell surface via fluorescence activated cell 

sorting (FACS). We extend the assay by performing the proteolysis at various denaturing 

combinations to determine if different stability attributes (thermal, chemical, protease 

specificity) can be resolved. 2) Split green fluorescent protein (GFP, Figure 1e,f) - 

previously used to determine soluble protein concentrations137 - measures the assembled 

GFP fluorescence emerging from a 16-amino acid fragment (GFP11) fused to the POI after 

recombining with the separably expressed GFP1-10. We extend the assay by utilizing FACS 

to separate cells with differential POI expression to increase throughput over the plate-

based assay. 3) Split β-lactamase (Figure 1g,h) - previously used to improve 

thermodynamic stability138 and solubility139 - measures cell growth inhibition via 

ampicillin to determine functional lactamase activity achieved from reconstitution of two 

enzyme fragments flanking the POI. We expand assay capacity by deep sequencing 

populations grown at various antibiotic concentrations to relate change in cell frequency to 

functional enzyme concentration.  

In this paper, we determined the HT assays’ abilities to predict Gp2 variant 

developability. We deep-sequenced the stratified populations and calculated assay scores 

(correlating to hypothesized developability) for ~105 Gp2 variants (Figure 1i). We then 

converted the assay scores into a traditional developability metric by building a model that 
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predicts recombinant yield (Figure 1j). The assays’ capacity enabled yield evaluations for 

>100-fold traditional assay capacity (Figure 1k, compared to Figure 1b) and provide an 

introductory analysis of factors driving protein developability by observing beneficial 

mutations via predicted developable proteins (Figure 1l).  

3.4 Results  

3.4.1 Gp2 Paratope Library Quantification 

We first evaluated the assays’ ability to separate sequence classes with a 

hypothesized difference in developability. 204,174 observed Gp2 variants belonged to one 

of four classes (Figure 2a): GaR: a thermostable variant71, Stop: 13,690 nonfunctional 

truncated variants; CC+: 128,854 variants with a hypothesized26 stabilizing cysteine pair 

at sites 7 and 12; CC−: 61,629 variants without conserving sites 7 and 12. CC+, CC−, and 

Stop classes utilize a previously optimized conserved framework26 and two paratope loops, 

each with 6-8 ‘NNK’ degenerate codons encoding all 20 amino acids (Figure 2b). The 

library was widely diversified, averaging 13.1 differences between observed sequence 

pairs (Figure 2c).  
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Figure 3.2 - Developability Characterization of Loop-Diversified Gp2 Library 
a) Sequence alignment of assayed sequence classes: GaR (single variant control), Stop: (sequences with stop 

codon, Z), CC+: (hypothesized to be more developable), CC−: (hypothesized to be less developable) b) 

Diversified paratope frequency heatmap. c) Histogram depicting the pairwise distances between 190,483 full 

length and unique variants. d) Assay performance distributions divided by class. Top Row: various on-yeast 

protease assay reaction conditions. Bottom Row: bacterial assays performed in strain Iq and strain SH. GaR 

error bars represent the standard deviation (N=3 trials). Total unique variants for Stop, CC+, and CC− range 

93,178-140,229 for HT assays, and 431-447 for yield (See SI Appendix, Figure S2) e) The Spearman’s rank 

correlation coefficient between and f) mutual information between HT assays and yield. 
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3.4.2 Recombinant Yield as a Traditional Developability Metric 

We sought a traditional developability metric that was translationally relevant and 

scalable to train and validate predictive models. A key step in developing and using a 

protein involves recombinant production. Bacterial cells are often chosen due to 

affordability, ease, and speed140. However, with limited production machinery, expressed 

proteins must rely on inherent developability parameters to achieve high soluble 

concentrations. Also, considering alternative assays require high purified protein 

quantities, we selected bacterial recombinant yield as the metric of interest. The Gp2 titer 

in the soluble lysate fraction was measured using a chemiluminescent quantitative dot blot 

protocol141 via a C-terminal His6 tag (Figure 1a,b).  

Different bacterial strains have been evolved containing additional machinery to 

obtain increased yield. We chose to include two E. coli strains (T7 Express lysY/Iq (Iq) and 

SHuffle® T7 Express lysY (SH), New England Biolabs) for improved developability 

resolution. SH was chosen to stabilize disulfide formation and increase cysteine-free 

variant yields142. This was confirmed by GaR having a significantly higher yield in SH 

despite not having cysteines (p<0.05 in one-way Student’s t-test using trial-averaged yield, 

n=8 plates per strain). 

The recombinant yield of unique Gp2 sequences in each class was measured in 

triplicate (Figure 2d): GaR (both strains), Stop (Iq: 37 Gp2 variants, SH: 46), CC- (Iq: 98, 

SH: 117), and CC+ (Iq: 296, SH: 284). GaR had a significantly higher yield than most Stop 

sequences (Iq: 100%, SH: 63% of unique Stop sequences, p<0.05 in one-way Student’s t-

test using plate-averaged GaR standard deviation, n=3 trials), validating the dot blot 

controls while suggesting slight noise with SH. CC+ did not have significantly different 

yields than CC- (p = 0.40 in two-way Mann-Whitney U test) in Iq, while the populations 
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were significantly different in SH (p<0.05, one-way Mann-Whitney U test). This implies 

SH is forming a disulfide bond, thus increasing CC+ sequence developability.   

3.4.3 HT Developability Assays   

The Gp2 variants were sorted into populations of varying developability and were 

assigned an HT assay score as the mean over three independent trials (SI Appendix, Figure 

S1). Below we motivate score calculation, followed by assay score distribution analysis 

(Figure 2d, SI Appendix, Figure S2). 

3.4.3.1 On-yeast Stability 

The on-yeast stability assay evaluates protein stability by measuring proteolytic 

cleavage (Figure 1c). Using yeast surface display technology67, the POI is expressed 

between two tags (N-terminal HA, C-terminal cMyc). The protein-displaying yeast are 

exposed to a protease at a concentration that produces a distribution of cleavage (as 

determined by cMyc:HA ratio) across protein variants. The Gp2 library was sorted into 

four populations (Figure 1d). Sequencing scored every collected variant on a cell-weighted 

average: 1 (intact), 2/3, 1/3, 0 (fully cleaved).  

We performed the proteolysis using various conditions to determine if additional 

stability metrics could be obtained (SI Appendix, Figure S1). From our baseline condition 

(PPK37), we studied chemical stability by adding 1.5 M urea (PUrea) or 0.5 M guanidinium 

chloride (PGdn). We explored protease specificity by using proteinase K (PPK55) and 

thermolysin (PTL55). Finally, we examined thermostability for each enzyme at an additional 

temperature (PPK37 vs. PPK55 and PTL55 vs. PTL75).  

Assay scores were calculated for >105 unique Gp2 variants in each of the 6 reaction 

conditions. The assay score distributions per class (Figure 2d) matched hypothesized 
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developability in all conditions except PTL75. Standard deviations were small (0.17 – 0.20, 

except PTL75: 0.29). Stop variants scored low (0.04 – 0.08, except PTL75: 0.23). GaR scored 

higher than most Stop variants (67 – 81%, except PTL75: 35%). One potential hypothesis 

for PTL75 is the increased temperature may lead to non-specific binding of surface-

aggregated proteins. Nevertheless, all reaction conditions, displayed a significantly higher 

distribution of assay scores for CC+ vs. CC- (one-way Mann-Whitney U test, p<0.001), 

validating each condition’s utility. 

3.4.3.2 Split GFP 

The split GFP assay measures POI concentration with a C-terminus fused 11th 

strand of GFP (Figure 1e). Upon recombination with GFP strands 1-10, which was 

separately induced following POI production and a one-hour gap, the POI fusion remaining 

soluble in the cytosol will produce a fluorescent signal detectable by FACS (Figure 1f). 

The library was sorted into four populations based on GFP signal and assigned an assay 

score as a cell-weighted average: 1 (highest signal), 2/3, 1/3, 0 (background signal).  

The assay score distributions (Figure 2d) are consistent with expectations in SH 

(GSH) with limited resolution in Iq (GIq). While both distributions display a low assay score 

skew, GaR had a significantly higher score than 76% of Stop in GSH, compared to 8% in 

GIq. Additionally, GSH produced a significantly higher assay score distribution for CC+ 

compared to CC- (one-way Mann-Whitney U test. p<0.001) whereas GIq scores were only 

nominally higher (p=0.15). Thus, GSH is a compelling candidate for HT developability 

analysis. 
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3.4.3.3 Split β-lactamase 

In the split β-lactamase assay, the POI is inserted in a loop distal to the active site 

(final construct: β-lac1-194-(G4S)2-AS-POI-GS-(G4S)2-β-lac197-287, location previously 

observed to retain 40% activity143). Functional enzyme, hypothesized to be paired with POI 

solubility and folding robustness144, provides ampicillin resistance allowing cell 

reproduction (Figure 1g). The change in growth rates was measured as the change in POI 

amplicon abundance in cultures grown to saturation with varying antibiotic concentrations 

(Figure 1h). For comparison to other assays and improved modeling efficiency, slopes were 

normalized and scaled (see Methods).  

The split β-lactamase assay produced assay scores that were contradictory towards 

hypothesized developability yet were able to differentiate classes, suggesting potential 

utility despite an unsolved mechanism. We obtained assay scores for 1x105 variants in both 

Iq (βIq) and SH (βSH). Independent GaR cultures (capable of growing at all concentrations) 

and Stop (unable to grow in non-zero ampicillin concentrations) performed as expected (SI 

Appendix, Figure S3). Yet in multi-POI culture, GaR had a significantly lower assay score 

than Stop (βIq: 99%, βSH: 70%, one-way Student’s t-test, p<0.05), and the CC+ population 

had a significantly lower assay score distribution than CC- (both strains, one-way Mann-

Whitney U test, p<0.001). See Figure 5 and Discussion for further explanation.  

3.4.4 Determination of Most Predictive HT Assay Conditions  

While the HT assays broadly differentiated hypothesized class developability, the 

ability to transform the assay scores to a traditional metric is a superior utility assessment. 

Despite the limited sensitivity in the split GFP assay and the counterintuitive split β-

lactamase distributions with minimal rank correlation to yield (Figure 2e), the assays have 
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nonzero mutual information (MI) with yield, suggesting utility as long as the predictive 

model is capable of exploiting the nonlinear relationships captured by MI (Figure 2f). In 

this section, we determine the optimal HT assay set (assay type, reaction conditions, and/or 

bacterial strain) by the ability to predict recombinant yield with the lowest mean-squared 

error (MSE) loss. 

With a potential complex relationship between developability and assay scores, we 

designed our model to maximize the ability to detect assay utility. Correlation of yields in 

both strains was observed (ρ CC+: 0.65, CC-: 0.61; SI Appendix, Figure S4); thus, a 

multitask model (Figure 3a) was utilized to include both strains’ yield measurements via a 

one-hot (OH) encoded vector. We included relevant comparisons for model inputs: a null 

strain-only model (predicts the mean yield per strain) and a OH sequence model (encoded 

and flattened paratope sequence). To capture possible linear and nonlinear relationships 

between assay scores, sequences, strains, and yield, four model architectures (ridge, 

random forest, support vector machine, and a feedforward neural network) were employed.  
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Figure 3.3 - Determination of Predictive HT Developability Assays 
a) Model visualization utilizing HT assay scores, a one-hot paratope sequence, and a one-hot strain identifier 

to predict the recombinant yield in both cell types.  b) Power-transformation and standardization of yields to 

remove correlation between yield and error (See SI Appendix, Figure S5). c) Predictive model loss (mean 

squared error (MSE) between predicted and actual yields) distribution for 1,023 HT assay combinations. d) 

The top combinations from CV (listed top down) were tested for generalizability by the predictive loss against 

independent set of 44 sequences. e) Representative scatter plots of predicted versus measured yield (Iq: 

purple, SH: orange; top: power-transformed and normalized, bottom: non-transformed) during final 

evaluation on set of 97 sequences. Purple shaded area represents true yield ± square root of sequence-

averaged experimental variance. 

 

Cross-validation (CV) and hyper-parameter optimization were trained by 195 

unique sequences observed in all HT assays and for which yield was measured in at least 

one strain. A Yeo-Johnson145 power transform and normalization was applied to remove 

correlation between error and yield (λ = -0.324, SI Appendix, Figure S5). The experimental 
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variance (measurement accuracy) was calculated as the sequence-averaged trial-to-trial 

(n=3) variance after applying the transformation to trial yields.  

Despite potential limitations, all 1023 assay combinations of the 10 HT conditions 

predicted yield with a lower CV loss than the strain-only control, and 92% of the 

combinations outperformed the OH sequence model (Figure 3b) suggesting all conditions 

possess utility. There were seven assay combinations (using seven of the ten assays) that 

performed optimally and equally (SI Appendix, Figure S6, one-way Student’s t-test against 

top model, p>0.05). To determine the most generalizable collection, the yield for an 

independent set of 44 sequences (not utilized during CV but observed in top seven HT 

assays) was predicted revealing the most informative set: PPK37, GSH, βSH (Figure 3c, one-

way Student’s t-test against top model, p<0.05). 

The top three HT assays can provide substantial predictive power for variant 

developability over sequence or strain information alone. The yield for a second set of 97 

sequences (not utilized during CV but observed in top three HT assays) was predicted 

(Figure 3d, SI Appendix, Figure S6). The assay model (MSE: 0.565) was able to 

significantly (one-way Student’s t-test, p<0.05) outperform the one-hot sequence model 

(MSE: 0.667) and strain-only model (MSE: 0.697). A model utilizing both sequence and 

assay information (MSE: 0.562) did not have significantly different (p>0.05) performance 

from the assay model alone, suggesting little aid of sequence knowledge as currently 

implemented.  The model utilizing sequence and assay information, while predicting better 

than alternatives, required a nonlinear random forest architecture with 325 trees for optimal 

predictive performance that still trails the experimental variance (0.364), suggesting room 

for future improvement. As performed, the assays reduce the gap between prediction and 
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experimental error of developability evaluation by 35% compared to sequence information 

alone.  

A practical application of the HT developability assays is the ability to isolate 

sequences with increased developability from those without. To this effect, we calculated 

a receiver-operator curve (ROC) and precision-recall curve via pretrained models to 

classify the independent test sequences in the top 50th percentile of each strain (SI 

Appendix, Figure S7). When utilizing the HT assay scores, the area under the ROC was 

improved from 0.59 to 0.71 (Strain Iq) and from 0.55 to 0.69 (Strain SH) over the OH 

sequence model. The average precision, a metric more focused on correctly identifying the 

positive class, was improved from 0.56 to 0.71 (Strain Iq) and 0.55 to 0.70 (Strain SH) 

demonstrating the HT assays are also capable of isolating developable sequences.  

3.4.5 Optimal Paratope Sequence Identification 

With a predictive model to translate the assay scores to recombinant expression, we 

aimed to understand the sequence-developability relationship. The predictive model 

utilizing PPK37, GSH, βSH assay scores and OH sequence was used to predict the yield for 

45,433 unique sequences in both strains (Figures 1k & 4a). After observing the predicted 

yield distribution, 6,394 sequences with a predicted Iq yield > 2.5 mg/L (transformed yield 

> 0.0) and SH yield > 6.4 mg/L (transformed yield > 0.75) were isolated as Dev+. The 

pairwise Hamming distance distribution for the Dev+ sequences (median 12.3) is shifted to 

significantly lower values than the initial distribution (median 13.0, χ2, p < 0.05), 

suggesting that developable sequences exist in a partially constrained subset of sequence 

space.  
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Figure 3.4 - HT Assays Enable Prediction of Gp2 Variants with High Developability 
a) Kernel density plot of the predicted yield of 45,433 unique sequences in each bacterial strain. 6,394 

sequences with high predicted yield in both strains were isolated as Dev+ (red). b) Sitewise enrichment 

heatmap (Dev+ versus all predicted sequences) for each amino acid and averaged groups with similar 

chemical properties: aromatic (F, W, Y), small* (A, G, S), non-polar aliphatic (A, G, I, L, M, P, V), polar 

uncharged* (N, Q, S, T), negative charged (D, E), positive charged (H, K, R), hydrophobic (A, F, G, I , L, 

M, P, V, W, Y), and hydrophilic* (D, E, H, K, N, Q, R, S, T). *Note: cysteine was removed to identify any 

further enrichment of the groups. Loop 1: positions 8-11. Loop 2: positions 34-39.  c) The proportion of 

sequences predicted identified as Dev+ as a function of the number of cysteines in the sequence. Error bars: 

1 / number of predicted sequences. d) The most frequent (percent of Dev+) and enriched (log2 of Dev+ versus 

all predicted) positions for combinations of cysteines that result in high developability proteins. e) Wild type 

paratope positions of Gp2 (PDB: 2WMN) colored by the mutational tolerance calculated as the inverse of 

the average magnitude of amino acid enrichment. 

 

To identify beneficial, tolerable, and detrimental mutations to developability, the 

log2 difference in amino acid frequency at each position between Dev+ and all predicted 

sequences was calculated (Figure 4b). Cysteine was the only positively enriched amino 

acid at positions 7 and 12 (confirming CC+ stability) but was also the most enriched at 

every position. The high cysteine enrichment was also observed when analyzing 

predictions of an assay score model without sequence information (SI Appendix, Figure 

S8). Regarding epistasis, we analyzed the probability of Dev+ as conditioned by number of 
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cysteines in the sequence, finding 3 or 4 cysteines most optimal (Figure 4c). There also 

appears to be a benefit of 7 cysteines, however the limited number of sequences (n=5) 

limits the confidence in the benefit. To determine the best cysteine locations to improve 

developability, the Dev+ frequency and log2 enrichment were calculated (Figure 4d). It 

should be noted the 7 and 12 pair had a negative enrichment likely due to the artificially 

increased initial frequency. As additional cysteines may be disfavored for downstream 

processing flexibility, the enrichment of sequences only containing cysteines at positions 

7 and 12 was calculated (SI Appendix, Figure S9). Enabled by the assay throughput, less-

extreme enrichment values observed for cysteine-rich sequences (compared to sequences 

with fewer cysteines) suggests the cysteines are buffering stability and permitting a wider 

sequence set. The preference of cysteines in Dev+ sequences could be partially impacted 

by disulfide-driven protease resistance in the on-yeast stability assay, e.g. with a free 

cysteine located near the active site of proteinase K146. However, both the OH model and 

a model utilizing only assays GSH and βSH also indicate a stabilizing effect of additional 

cysteines (SI Appendix, Figure S10c-f). Moreover, recombinant yield increased at higher 

cysteine frequencies of synthesized variants (ρ: Iq = 0.28, SH = 0.48, SI Appendix, Figure 

S12a,b). 

Additional analysis enabled by the HT assays were used to hypothesize properties 

that drive Gp2 stability. The enrichment of small residues (alanine, glycine, and serine) at 

position 34, the proline depletion in the second loop, and gap enrichment at positions 36b,c 

(enriching sequences of wild type length) suggests the second loop may be geometrically 

constrained. We assessed positional mutational tolerance (ability to mutate without 

modifying developability) by calculating the inverse of the average enrichment score 
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magnitude (Figure 4e). Positions 7 and 12 were the most constrained (tolerances: 0.5), 

signifying the need to be cysteines. While position 37 was the least constrained position 

(8.8), as a whole loop 2 (5.5) was less tolerant than loop 1 (5.9, excluding 7 and 12). We 

hypothesize either i) the second loop is a poor paratope in terms of allowing broad diversity 

with favorable developability or ii) the stabilizing disulfide bond offsets unfavorable 

mutations within the first loop.  

3.4.6 βSH Assay Predictive Performance Explained by Mutual Information 

Like amino acid preference, we sought a first-order understanding of optimal assay 

scores by looking at the Dev+ distribution compared to all observed unique sequences 

(Figure 5a). Matching the sequence class distributions (see Figure 2), PPK37 and GSH assay 

scores of Dev+ sequences were significantly higher, and βSH assay scores was significantly 

lower than the initial distribution (Figure 5a, one-way Mann-Whitney U test, p<0.05). 

However, the rank correlation between βSH and yield is slightly positive (Iq: 0.00, SH: 

0.11), suggesting the model is exploiting a nonlinear relationship. 

 

Figure 3.5 - Nonlinear models can extract nonlinear developability mutual information 

(MI) from the split β-lactamase assay 
a) Comparison of assay score distributions between 45,433 unique sequences with observed PPK37, GSH, βSH 

assay scores (blue) versus 6,394 of the sequences with high predicted developability (Dev+, red). b) The 

predictive performance of model input combinations in both a linear architecture (ridge regression) and 

nonlinear architectures (reported top performance of random forest, support vector machine, and a feed-

forward Neural Network). Error bars in nonlinear models represent standard deviation in MSE from n=10 

stochastically trained models. c) The correlation-based feature selection (CFS) as calculated by MI for 1023 

assay combinations versus the CV loss utilizing the best of linear and nonlinear model architectures. The 
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Spearman’s rank correlation coefficient (ρ) between CFS and loss confirms the ability of the models to extract 

nonlinear MI. 

 

We hypothesize that the counterintuitive relationships between βSH and yield 

resulted from several competing interactions relating the change in sequence frequency to 

the concentration of functional enzyme-POI. We tested this by comparing nonlinear versus 

linear model performances for several model input combinations (Figure 5b). While the 

PPK37 and GSH assays, alone and together, performed better with a linear model, 4 of 5 

models using the βSH assay performed best with a nonlinear model. 

The correlation-based feature selection147 (CFS) explains how the nonzero MI 

between βSH and yield (Iq: 0.16, SH: 0.13) resulted in increased predictive power by 

supplying non-redundant information with respect to other HT assays. The CFS calculated 

by MI was significantly higher and CV loss was significantly lower of HT assay 

combinations containing βSH than assay combinations without (Figure 5c, one-way Mann-

Whitney U test, p < 0.05). CFS calculated with MI was highly correlated with loss when 

utilizing nonlinear models (ρ = -0.70) remarking its effectiveness as a feature selection 

tool. We also found CFS calculated by rank correlation was correlated to linear model 

performance (ρ = -0.56) but less so to overall performance (ρ = -0.30) as linear models 

cannot exploit nonlinear relationships (SI Appendix, Figure S11). As a result, the top CFS 

combination via rank correlation (PPK37, PUrea, PPK55, GIq, GSH. Ridge MSE: 0.564) 

increased the prediction error relative to experimental variance by 46% compared to the 

top model identified by CFS via MI (PPK37, PTL55, GSH, βSH. Forest MSE: 0.497). While the 

current selection of HT assays were chosen by hypothesized utility, based upon the results 

of CFS, future HT assays, such as systems for assessing protein foldability148,149, should be 

considered if it is believed the assay will provide a non-redundant metric of developability. 
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3.4.7 Training Sample Size Evaluation 

Next, we asked how the predictive performance scales versus the number of 

training sequences. We first analyzed how many sequences it takes for a model to learn 

training set developability, as determined by outperforming the strain only model during 

CV (Figure 6a). With only 10 sequences (5% of data), the PPK37, GSH, βSH model achieves 

this goal (one-way paired t-test, p<0.05). However, models with sequence information 

required at least 39 sequences (20% of data) to achieve the same accomplishment, 

suggesting the increased input dimensionality limits the model’s ability to learn. When 

evaluating the models for generalizability against a test set (Figure 6b), the models using 

assays required only 59 (PPK37, GSH, βSH, 30% of data, p<0.05) or 78 (Sequence and PPK37, 

GSH, βSH, 40% of data, p<0.05) training sequences to outperform the strain only model, 

while the sequence only model required all 195 sequences. The generalizability results 

suggest the HT assays reduce the training data requirements by 60-70% over sequence 

information alone.  

 

Figure 3.6 - HT developability assays reduce training size requirement 
Ten bootstrapped samples for each sample size (ranging 5-100% of available data) were individually trained 

by CV and evaluated on 97 independent test sequences.  Error bars represent standard deviation across 

models. a) The performance during CV describing the model’s ability to predict developability. b) The 

predictive performance against the independent sequence set describing the models’ ability to generalize 

beyond the training data. c) The generalizable performance was extrapolated to estimate the required number 

of sequences for the model to perform optimally. Log-log regression was trained with points weighted by the 
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inverse of test loss variance. The error shown represents the propagated error from the standard errors of the 

parameter estimates. 

 

We also extrapolate how many additional training sequences would be required to 

achieve performance within the measurement accuracy (experimental variance). For each 

model, we extrapolated a best-fit line between the log10 test loss and the log10 number of 

training sequences weighted by the inverse variance for each sample size (Figure 6c). We 

predict that utilizing the HT assay scores, the number of unique sequences required to 

obtain optimal performance is 80±40% (PPK37, GSH, βSH) and 81±24% (Sequence and PPK37, 

GSH, βSH) lower than what would be required when considering sequence information 

alone, which demonstrates the efficiency of the HT assays to enable developability 

engineering.  

3.4.8 Error Analysis 

While the trio of assays provide valuable developability assessment, we sought to 

identify factors that limit performance. Due to the sampling strategy (see Methods), the 

observation frequency of variants analyzed via dot-blot was higher than the distribution of 

all variants observed in the HT assays (SI Appendix, Figure S12a). However, we observed 

non-significant correlation (ρ: Iq = 0.02, SH = 0.07, SI Appendix, Figure S12b) between 

the accuracy of our model and the predictive loss in either strain, suggesting that the 

predicted yields are not influenced by observation frequencies. 

We next assessed if the number of collected populations per assay influenced the 

ability to predict recombinant yield. The assay scores were recalculated with only two 

merged populations from the HT assays at various levels of stringency (SI Appendix, 

Figure S13). We found that, if sequence and assay information is utilized, there is little 

benefit of utilizing four populations over two provided that the most stringent gate is used. 
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Interestingly, when only using assay scores to predict yield there was a decrease in 

predictive accuracy, especially when the highest stringency was not isolated. This suggests 

that future iterations of assay development may benefit from increasing resolution among 

the most developable variants.  

Finally, we assessed the effect of trial-to-trial assay score variance for the top 

performing HT assays (SI Appendix, Figure S14). We found that the ability of the HT 

assays to predict yield increased when averaging assay scores over multiple trials. Thus, 

while trial-to-trial reproducibility was not limited (ρ: PPK37 = 0.66-0.71, GSH = 0.26-0.29, 

βSH = 0.39-0.48), the increased resolution of multiple trials may improve overall utility.  

Combining the analysis of potential sources of error, we believe future studies will 

benefit most from increased technical replicates, with more moderate gains from increased 

stringency in isolating populations and minimal benefit from increased resolution via 

increased observation frequency. Yet, the relatively small impacts of high-throughput error 

identified in this section paired with moderate MI between assays and yield (SI Appendix, 

Figure 11d) suggest a more likely limitation is the difference in mechanisms driving 

success in each assay. For example: 1) the protease assays utilize a eukaryotic cell with 

more complex cellular machinery than the prokaryotic E. coli; 2) the split GFP assay 

measures intracellular protein concentration rather than the amount of extractable soluble 

protein during cell lysis; and 3) the split β-lactamase assay ties transport to the periplasm 

and enzymatic activity on top of the producibility measured via dot blot. Thus, pursuit of 

additional assays with non-redundant metrics of developability and closer mechanisms to 

the traditional metric should be sought to augment the significant predictive power already 

achieved with the current assays. 
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3.5 Discussion 

Traditional protein developability measurements are restricted in practical 

throughput, reducing the number of protein variants that can be reasonably characterized. 

We evaluated HT assays that genetically encode the POI in a context where the cell’s 

phenotype is related to the POI’s developability. The on-yeast protease, split GFP, and split 

β-lactamase assays exhibited their ability to proxy protein developability via prediction of 

recombinant yield for Gp2 scaffold variants. HT assays increased the scale of protein 

developability differentiation by 100-fold (in this study: 400 yield measurements versus 

predicted yield via 40k HT assay measurements) and potentially enable analysis of 

developable sequences beyond those presented in this manuscript.  Ligation efficiency for 

bacterial transformations and the sequencing depth per cost are current capacity limitations. 

However, future studies utilizing the narrowed set of optimal assay conditions determined 

in this work could potentially screen millions of unique variants with minimal 

modifications. 

The most useful conditions were determined by comparing the predictive model 

performance of a traditional developability metric. Only one of six protease assay 

conditions were utilized in the top model, indicating that other conditions (chemical 

denaturants, elevated temperature, and alternative protease) were not needed to increase 

the predictive accuracy of recombinant soluble yield. This may be because the assays were 

unable to capture alternative stability metrics, or that a single stability metric is sufficient 

to predict developability. Additional assays may be useful for predicting other traditional 

developability metrics, such as thermostability. For example, PTL55 was found in 5 of 7 top 

CV models and may aid thermal predictions. The split GFP and split β-lactamase assays 

were most beneficial when utilizing SH assay scores despite predicting both strain’s yield. 
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We hypothesize SH was able to increase developability resolution over Iq in our library by 

promoting stabilizing disulfide bonds and chaperoning the production of even weakly 

developable variants. 

A nonlinear model was required to convert the split β-lactamase HT assay scores 

to a traditional developability metric. The reference assay evaluated enzymatic activity via 

minimum inhibitory concentration (MIC) of ampicillin by clonal colony growth on an agar 

plate138. While the exact differences between our measured assay score and the traditional 

MIC remains unclear, one possible explanation is a decrease in growth rate with increased 

protein production150, lowering the frequency of highly produced variants. Library plating 

on agar plates could reduce this mechanism but with throughput limitations to achieve 

sufficient physical spacing to avoid bystander ampicillin reduction. In any event, despite 

the discrepancy, we have shown nonlinear models can extract useful developability 

information to predict recombinant yield. One assay limitation is the inability to perform 

direct selection, which is possible for the on-yeast protease and split GFP, based upon the 

linear model performance. A potential solution to streamline the discovery would be serial 

direct selections via on-yeast protease and split GFP, followed by a sequenced stratification 

via the split β-lactamase to increase accuracy. 

The Gp2 library (~1020) is well beyond the capacity of traditional developability 

assays that often fail to produce predictive sequence-based models. Utilizing the HT 

assays, we predicted yields 35% closer to experimental accuracy than a one-hot encoded 

sequence-based model trained on the same sequence set, proving their utility over naïve 

computational approaches in the vast protein domain. We studied the sitewise amino acid 

biases based upon predicted yield of 40k unique paratopes, which can be used to design 
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more effective libraries41,42,91,151,152. However, the analysis utility is limited by multi-site 

interactions (observed with cysteine) and model accuracy. We believe the increased 

knowledge will enable more advanced sequence-based models, capable of extrapolating 

developability to unobserved variants. The efficiency and accuracy of measuring 

developability proxies via HT assays empowers such models.  

We estimate the HT assays will reduce the number of sequences required to produce 

an optimal predictive model by 80% compared to sequence information alone. Advances 

in experimental protocol (beyond those evaluated in this study) and alternative model 

architectures may provide other routes for increased utility. The assays presented in this 

work have shown the ability to evaluate the developability for a substantially higher 

number of unique sequences compared to traditional methods. These assays are essentially 

independent of protein primary function (assuming naïve Gp2 variants tested have no 

known primary function). Future work will validate the utility of integrating developability 

assays with discovery and evolution of primary function. Continued improvements of HT 

assay development may revolutionize the candidate selection process by presorting 

proteins for ideal developability before the primary function is evaluated, removing a 

discovery and engineering bottleneck.  

3.6 Materials and Methods 

The following section contains a summary of relevant information to perform the 

HT assays and predictive analyses. Additional methods can be found in the SI Appendix.    

3.6.1 Subsampling Gp2 Library 

We chose to subsample the transformed population to increase assay resolution by 

sampling multiple cells per sequence and performing assays in triplicate. We projected 10 
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reads per sequence for on-yeast protease and split GFP, and 10 reads per sequence per 

antibiotic concentration for the split β-lactamase assay, summing to 160 reads per sequence 

per trial across all ten assays. We found the limiting factors to be the capacity of high-

throughput sequencing and bacterial ligation efficiency. Given that an Illumina NovaSeq 

SP flowcell can achieve 400 x 106 reads per lane for about $3,000, we decided on utilizing 

two lanes to analyze the 106 sequences to balance information and experimental cost. The 

realized difference in obtained sequence information is likely due to stochastic sampling 

leading to a bias in sequence frequencies.   

3.6.2 On-Yeast Protease Assay 

Dilutions of proteases and yeast were separately prepared on ice. Proteinase K 

(P8107S, New England Biolabs) was diluted to twice the reaction concentration in PBSA 

(PUrea was diluted using 3 M urea in PBSA, PGdn was diluted using 1 M guanidium chloride 

in PBSA). Thermolysin (V4001, Promega) was reconstituted to 1 mg/mL in 50 mM Tris 

at pH 8 with 0.5 mM calcium chloride and diluted with PBSA on the day of experiment. 

Exposure time with protease at reaction temperature was held constant while the 

concentrations of protease were modified to obtain a roughly equal distribution of FACS 

gates’ occupancy (SI Appendix, Figure S1). 

Ten million yeast cells expressing the subsampled library were centrifuged at 5000g 

for 1 min, aspirated, resuspended in 1 mL cold PBSA, centrifuged, resuspended in 50 µL 

of PBSA, and transferred to a 0.2 mL PCR tube on ice. 50 µL of the diluted enzyme was 

added to the cells and mixed via pipetting on ice. The enzyme-yeast mixture was placed in 

a pre-chilled 4 °C PCR block where a preset program heated the mixture to the reaction 

temperature for 10 min and returned the mixture to 4 °C. Both heating and cooling rates 



78 

were set to the maximum ramp speed on the Eppendorf Mastercycler Nexus GX2. The 

enzyme-yeast mixture was then added to 1 mL of cold PBSA and the epitopes were labeled 

following the protocol used during library subsampling.  

The cells were separated via FACS into four populations based upon the cMyc to 

HA ratio. The undigested gate (highest cMyc:HA ratio) was determined by the location of 

the library in a no-enzyme control. The fully digested gate (lowest cMyc:HA ratio) was 

determined by the location of the no-enzyme control where the primary mouse-anti-cMyc 

antibody was omitted. The other two gates were drawn to divide the remaining space in 

half. Collected cells were centrifuged and stored at -80 °C without allowing propagation.  

3.6.3 Split GFP Assay 

Frozen aliquots of cells were thawed and grown in 5 mL LB+Amp+Kan overnight. 

Part of the overnight culture was added to 5 mL fresh LB+Amp+Kan at an OD600 of 0.1 

and grown for 90 min. Gp2-GFP11 production was induced by the addition of 0.5 mM 

IPTG. For the remainder of split-GFP protocol, both Iq and SH strains were grown at 37 

°C.  Production continued for 2 h, followed by a centrifugation (3000g for 3 min). Cells 

were then resuspended in 5 mL fresh LB+Amp+Kan and incubated for 1 h to end Gp2-

GFP11 expression. GFP1-10 expression was then induced by adding 2 mg/mL arabinose and 

production continued for 2 h. Finally, the culture was centrifuged, resuspended in 1 mL 

cold PBSA, and stored on wet ice.  

FACS was used to separate bacterial cells based upon the GFP signal. Background 

fluorescence was determined by cells containing the stop-GFP11 plasmid. The remainder 

of cells were divided into three equally (log scale) spaced gates. The collected populations 
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were centrifuged (3000g for 10 min) and frozen at -80 °C to inhibit growth. The cells were 

then thawed and miniprepped to obtain the Gp2-encoding plasmids.  

3.6.4 Split β-lactamase Assay 

Frozen aliquots of cells were thawed and grown in 5 mL LB+Kan overnight. Part 

of the overnight culture was added to 5 mL fresh LB+Kan at an OD600 of 0.01 and grown 

for 90 min. The split β-lactamase production was induced by the addition of 0.5 mM IPTG. 

Production was continued for 2 h at 37 °C (strain Iq) or 4 h at 30 °C (strain SH). The culture 

was then divided into 6 x 300 µL wells per concentration of ampicillin in a 96 well plate. 

30 µL per well of diluted ampicillin was spiked in to achieve the desired final 

concentrations. The cultures were then monitored in a Synergy H1 microplate reader 

(BioTek) with continuous double-orbital shaking and the 600 nm absorbance obtained 

every five minutes. All wells for a given concentration of ampicillin when the average 

unnormalized absorbance reached 0.35 were removed from the plate, centrifuged (12,000 

g for 3 min), and frozen at -80 °C to stop growth. The cells were then thawed and 

miniprepped to obtain the Gp2-encoding plasmids. 

3.6.5 High-Throughput Assay Score Calculations 

3.6.5.1 On-yeast protease and Split GFP Assay Score Calculation 

The four collection gates in the FACS based assays were drawn to bin cells via 

hypothesized developability. Thus, we defined an assay score which correlates to the 

relative position of a sequence. To increase resolution, we collected an average of 6.7X 

(on-yeast protease) and 7.9X (split-GFP) the hypothesized diversity of cells per trial and 

assigned a score correlating to the average cell location.  

For each population, the read frequency of every sequence was converted to the 

number of cells collected via FACS (Equation 1).  
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𝑐𝑒𝑙𝑙𝑠 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖 𝑖𝑛 𝑔𝑎𝑡𝑒 𝑗

=
𝑟𝑒𝑎𝑑𝑠 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 𝑖𝑛 𝑔𝑎𝑡𝑒 𝑗

∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑔𝑎𝑡𝑒 𝑗 

(Eq 1) 

 

The assay score for a sequence was calculated by assigning each gate a score [0, 

1/3, 2/3, 1] and determining the cell-averaged score (Equation M2). For on-yeast protease, 

1 was given to full length sequences and 0 was given to fully digested sequences. For split 

GFP, 0 was given to no detected GFP signal and 1 was given to the highest amount of GFP 

signal.  

𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖

=
∑ 𝑐𝑒𝑙𝑙𝑠 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖 𝑖𝑛 𝑔𝑎𝑡𝑒 𝑗 ∗ 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑔𝑎𝑡𝑒 𝑗𝑗 𝑔𝑎𝑡𝑒𝑠

∑ 𝑐𝑒𝑙𝑙𝑠 𝑜𝑓 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑖 𝑖𝑛 𝑔𝑎𝑡𝑒 𝑗𝑗 𝑔𝑎𝑡𝑒𝑠
 

(Eq 2) 

 

The final assay score was determined by the average score for a sequence in each 

trial. Sequences without reads in at least one gate per trial were removed from the dataset.  

3.6.5.2 Split β-lactamase Assay Score Calculation 

We aimed to assign an assay score that would correlate to the total activity of β-

lactamase enzyme in each cell. We assumed that cells with active enzyme grown in 

ampicillin will retain the ability to grow and divide (and thus increase DNA frequency), 

whereas cells with inactive enzyme grown in ampicillin will stop growth (and thus prevent 

any increase in DNA frequency). To increase resolution, we chose ampicillin 

concentrations that produced approximately 10%, 30%, and 60% of uninhibited growth for 

each cell strain. Briefly, we estimated the max growth rate and determined the extra number 
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of doublings required to reach a given concentration. Assuming all cells are growing with 

no ampicillin, the relative number of dividing cells can be determined by the initial number 

of cells. The assay score for each sequence was determined by the relative change in read 

frequency with increasing ampicillin concentrations. For simplicity, the ampicillin 

concentrations were assigned to [0, 1, 2, 3] where 0 represented the no-ampicillin control 

and 3 represented the highest ampicillin concentration.  

The final assay score was determined by the average score for a sequence in each 

trial. Sequences without a read in the no-ampicillin population in each trial were removed 

from the dataset. To scale the assay scores within the range [0,1], scores for CC+ and CC- 

sequences (not including the independent Test sequences to prevent data leaking) were 

normalized via scikit-learn’s quantile transformer with a normal output distribution 

followed by a minmax scaler.  

3.6.6 Dot Blots to Quantify Expression 

3.6.6.1 Production of Gp2 Library for Dot Blot 

Frozen cells from deep well 96-well plates were scraped and seeded into 500 

µL/well fresh LB+Kan and grown overnight (Iq was grown at 37 °C and SH was grown at 

30 °C for the entire production). The following day, 25 µL/well of overnight culture was 

added to 1 mL/well of fresh LB+Kan and grown for 90 min.  The protein production was 

induced by the addition of 0.5 mM IPTG (diluted in LB+Kan to add 100 µL/well). 

Production was continued for 2 h (Iq) or 4 h (SH) followed by centrifugation (3,000g for 5 

minutes) and freezing of the cell pellet at -80 °C overnight. The pellet was thawed by the 

addition of 100 µL/well lysis buffer (only change is 0.1 mg/mL lysozyme) and shaken at 

37 °C for 1 hour. The plates were centrifuged (3,000g for 5 min) and 25 µL/well of the 

soluble fraction was added to 25 µL/well of denaturing buffer Protein lysates from SH were 
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diluted an additional 5X in denaturing buffer to ensure signals were within the range of 

standards. The plates were incubated at 70 °C for 5 min to ensure denaturation and full 

accessibility of the His6
 tag.  

3.6.6.2 Dot-Blot Protocol 

A section of 0.2 µm pore polyvinylidene fluoride (PVDF, 1620177, BioRad) was 

cut to size and placed in a box (15.2 cm × 10.2 cm × 3.2 cm, Z742094, Sigma Aldrich). 

The membrane was soaked in 50 mL methanol for 30 s, followed by 50 mL dH2O for 2 

min. Finally, the membrane was equilibrated in 50 mL TBST (0.05% v/v Tween 20 in tris-

buffered saline (TBS)) for 5 min. The membrane was then placed on a TBST soaked filter 

paper and padded dry with a Kimwipes™. Using a multichannel pipet, 2 µL/well of protein 

samples were added to the membrane and allowed to fully absorb. The membrane was then 

transferred to a dry filter paper and placed in a fume hood for 30 min until dry. The 

membrane was then placed back in the box with 50 mL blocking solution (5% (w/v) nonfat 

dry milk in TBST) and rocked overnight at 4 °C. The membrane was then labeled with 50 

mL of 0.2 µg/mL anti His6-HRP (ab1187, Abcam) in blocking solution for 30 minutes at 

room temperature. Excess antibody was washed via 3 washes of 50 mL TBST for 10 min 

at room temperature. The membrane was then soaked in 25 mL of SuperSignal™ West 

Pico PLUS Chemiluminescent Substrate (ThermoFisher) for 5 min. Then membrane was 

then placed inside a transparency and exposed 10-30 s on a ChemiDoc MP Imaging System 

(BioRad).  
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3.6.7 Identification of HT Assay Predictiveness 

3.6.7.1 Code Availability 

Python scripts used for deep-sequencing and model evaluation, as well as datasets 

to train, evaluate, and plot predictive performance are available at 

https://github.com/HackelLab-UMN/DevRep.  

3.6.7.2 Cross-Validation Performance 

A set of 195 unique Gp2 variants contained measured HT assay scores in all 10 

assay conditions, and a yield in at least one of the strains. We performed 10 x 10 repeated 

K-fold cross-validation to determine which of the 1,023 combinations of HT assay 

conditions predicted the “left-out” set of sequences’ yield with the least error. Each HT 

assay combination was evaluated for predictive performance on four different model 

architectures summarized in Table 1. We utilized the Hyperopt153 library to determine the 

optimal hyperparameters for each architecture. We allowed 50 trials (or a maximum of 24 

hours of computational time for FNN) and recorded the trial with the lowest predictive 

error. 

Table 3.1 - Description of model architectures utilized when evaluating HT assay 

predictive performance 
“Uniform” and “quniform” refers to stochastic search spaces defined in the Python hyperopt library154. 

Architecture Description Hyperparameter Space 

Ridge sklearn.linear_model.Ridge 10: uniform[-5,5] 

Forest sklearn.ensemble.RandomForestRegressor 

n_estimators: quniform[1,500], 

max_depth: quniform[1,100], 

max_features: uniform[0,1] 

SVM sklearn.svm.SVR 
10: uniform[-3,3], 

10C: uniform[-3,3] 

FNN tf.keras.layers.Dense 

10^epochs: uniform[0,2], 

batch size: quniform[10,200], 

hidden layers: quniform[0,4], 

nodes/hidden layer: quniform[1,100] 

 

 

https://github.com/HackelLab-UMN/DevRep
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3.6.7.3 Test Performance 

When evaluating performance on the independent test sequences, the best model 

architecture and hyperparameters were chosen by cross-validation, but the weights for the 

model were refit utilizing the entire cross-validation training set. The independent test set 

was not used in training data transformations or models. 

3.6.7.4 Correlation Feature Selection (CFS) 

CFS identifies the optimal feature set by maximizing the relationship between 

features (x, HT assays) and target (y, yield) while minimizing the inter-feature 

relationships147. We calculated the CFS for every set (Sx) of 1023 HT assay combinations. 

We defined the relationship (r) as the absolute value of Spearman’s rank correlation 

coefficient (ρ) or the mutual information (MI) to capture linear and nonlinear relationships 

(Equation 3).  

𝐶𝐹𝑆 (𝑆𝑥) =
∑ (𝑟𝑦𝐼𝑞,𝑓𝑥

+ 𝑟𝑦𝑆𝐻,𝑓𝑥
)𝑘

𝑥=1

√𝑘 + 2 ∑ (∑ (𝑟𝑓𝑥,𝑓𝑧
)𝑘

𝑧=𝑥+1 )𝑘−1
𝑥=1

 
(Eq 3) 

 

3.6.7.5 Subsampling Training Data 

When evaluating the predictive performance of assays with varying number of 

training datapoints, we bootstrapped the dataset for cross-validation ten times. Each 

random dataset had separately optimized architectures and hyperparameters determined by 

cross-validation. Due to the computational constraints, FNN architecture was not evaluated 

when subsampling the training dataset.  

3.6.7.6 Propagation of Uncertainty 

Calculations involving propagation of uncertainty for predicted sample size were 

performed using the uncertainties155 Python package. 
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3.9 Supplemental Materials and Methods 

3.9.1 Library Generation and Selection 

3.9.1.1 Gp2 Insert Preparation 

The Gp2 libraries for high-throughput (HT) assays were created via polymerase 

chain reaction (PCR) overlap extension on oligonucleotides purchased from Integrated 

DNA Technologies. PCR conditions: 0.02 U/µL Q5 Hot Start High-Fidelity DNA 

Polymerase (New England Biolabs), 1X Q5 reaction buffer, 200 µM dNTPs, 0.5 µM 

primers (SI Appendix, DNA Table A: 1 & 17), 0.05 µM internal single stranded template 

(SI Appendix, DNA Table A: 2, 3, 4, 11, 15, 16), 0.008 µM degenerate strands for loop 1 

(SI Appendix, DNA Table A: 5-10), 0.017 µM degenerate strands for loop 2 (SI Appendix, 

DNA Table A: 12-14) diluted to 50 µL with deionized water (dH2O). Thermocycling 

routine: 98 °C for 30 s, (98 °C for 10 s, 59 °C for 30 s, 72 °C for 20 s) x 30 cycles, 72 °C 

for 120 s. The 300 bp resulting DNA was then gel extracted from a 2% agarose gel and 
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purified via silicon spin column (Epoch Life Sciences) eluting with 30 µL dH2O per 

manufacturer’s instructions. 

The constructed library was then amplified for electroporation. PCR conditions: 

0.02 U/µL Phusion High-Fidelity DNA Polymerase (New England Biolabs), 1X Phusion 

HF buffer, 200 µM dNTPs, 0.5 µM primers (SI Appendix, DNA Table A: 1 & 17), 15 µL 

purified template, diluted to 400 µL total volume with dH2O. Thermocycling routine: 98 

°C for 30 s, (98 °C for 10 s, 66 °C for 30 s, 72 °C for 20 s) x 35 cycles, 72 °C for 120 s. 

The DNA was concentrated and purified via ethanol precipitation: 40 µL 3 M sodium 

acetate at pH 5.2 and 1200 µL ethanol was added to the post-PCR product and the mixture 

was then incubated at 4 °C for 10 min. The insoluble DNA was pelleted via centrifugation 

at 15,000g for 20 min at 4 °C. The DNA was then washed with 1 mL 70% ethanol in dH2O, 

centrifuged, washed with 1 mL ethanol, centrifuged, aspirated, and dried overnight to R.T. 

air. The reaction was then resuspended in 30 µL of Buffer E’ (0.5 M sorbitol and 0.5 mM 

calcium chloride in dH2O).  

3.9.1.2 Yeast Surface Display Plasmid Preparation 

A yeast plasmid display vector pCT from Kruziki et al26 was modified to contain a 

stop codon before the cMyc epitope tag to serve as a negative control (final construct: 

Aga2-HA-Stop-cMyc, Plasmid Sequence 1). A plasmid expressing the parental Gp2 

programmed death-ligand 1 (PD-L1) binding clone E4 was restriction enzyme digested (2 

µg plasmid, 20 U BamHI-HF, 20 U PstI-HF, 5U Quick CIP, 1X CutSmart Buffer, diluted 

to 50 µL with dH2O and incubated at 37 °C for 1 hr), extracted from a 2% agarose gel, and 

purified via silica column eluted with 30 µL of dH2O. The motif was inserted via 

NEBuilder® HiFi DNA Assembly (New England Biolabs): 35 ng of the digested vector, 
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1.8 ng template DNA (SI Appendix, DNA Table B), 5 µL HiFi Master Mix, diluted to 10 

µL with dH2O was incubated at 50 °C for 20 mins. 2 µL of the reaction mixture was added 

to 25 µL NEB 5-alpha Competent E. coli and transformed according to the manufacturer’s 

protocol. The transformed cells were plated onto 100 µg/mL ampicillin LB agar plates. A 

colony was plucked, grown in LB (10 g/L tryptone, 5 g/L yeast extract, 10 g/L sodium 

chloride) with 100 µg/mL ampicillin, and miniprepped to obtain 50 µg of plasmid. The 

plasmid was restriction enzyme digested (50 µg plasmid, 200 U BamHI-HF, 200 U PstI-

HF, 50 U Quick CIP, 1X CutSmart Buffer, diluted to 500 µL with dH2O, incubated at 37 

°C for 2 h), and ethanol precipitated. The digested plasmid was reconstituted in 50 µL 

Buffer E’. The resulting concentration of vector was measured via absorbance with a 

NanoDrop (Thermo Fisher).   

3.9.1.3 Yeast Transformation 

The Gp2 gene library was inserted into the yeast display vector (final construct: 

Aga2–HA–GS linker–Gp2–cMyc) via homologous recombination into S. cerevisiae yeast 

(EBY100) (steps 36-48 in Chao et al.110) with the following modifications: step 37: 

inoculated 100 mL of culture, steps 38/41: all (50 µL) of Gp2 insert and 6 µg of digested 

plasmid was used per 100 mL culture, step 39: included 30% (v/v) PEG 8000 during 

incubation. Plating a dilution of the transformed cells on selective media estimated the 

creation of 3.6 x 108 variants of Gp2. Surface display was induced (Step 2110) by the 

introduction of galactose containing media followed by growth at 30 °C overnight. 

3.9.1.4 Epitope Labeling for Yeast Flow Cytometry 

Labeling of the HA and cMyc epitope tags were used to enrich the frequency of full 

length Gp2 variants while subsampling from the initial population via fluorescence-
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activated flow cytometry (FACS). Ten million yeast cells were centrifuged at 5000g for 1 

min. The induction media was removed, and the cell pellet was resuspended with 1 mL 

cold PBSA (1 g/L bovine serum albumin in 1X phosphate-buffered saline (PBS)). The cells 

were pelleted, aspirated, resuspended in 500 µL PBSA containing 0.5 µg of a chicken-anti-

HA antibody (ab9111, Abcam) and 1 µg of a mouse-anti-cMyc antibody (9E10, 

Biolegend), and rotated for 30 min at R.T. The cells were then centrifuged, washed with 1 

mL cold PBSA, and resuspended in 500 µL PBSA containing 0.5 µg of a goat-anti-chicken 

AlexaFluor488 antibody (A-11039, Invitrogen) and 1 µg of a goat-anti-mouse 

AlexaFluor647 antibody (A-21235, Invitrogen) and incubated at 4 °C for 20 min while 

protected from light. Finally, the cells were centrifuged, washed with 1 mL cold PBSA, 

and stored as a pellet after centrifugation until sorting. FACS was performed at the 

University of Minnesota Flow Cytometry Resource facilities. Cells were resuspended at 2 

x 107 cells/mL in PBSA and 1 x 106 cells displaying positive 488 (HA) and 647 (cMyc) 

signals were collected. Perhaps resulting from multi-vector transformants156, 6.7% of the 

sequences contained a stop codon in the paratope. Additional propagations were performed 

before completing high-throughput assays to mitigate this issue. Yeast expressing the GaR 

clone, obtained from Kruziki71, were added to the subsampled population at an intended 

ratio of 100 GaR : 1 random variant from library (obtained 172:1 via sequencing). 

3.9.2 On-Yeast Protease Assay 

3.9.2.1 Yeast DNA Extraction 

Frozen populations were thawed, and the DNA was obtained via Zymoclean Gel 

DNA Recovery Kit (Zymo Research) following the manufacturer’s protocol. Following 

the elution into 30 µL of dH2O, half of the DNA was mixed with 2 µL ExoI (M0293S, 

New England Biolabs), 1 µL of Lambda Exonuclease (M0262S, New England Biolabs) 



89 

and 2 µL of 10 X Lambda Exonuclease Buffer, incubated at 30 °C for 90 min to remove 

genomic DNA, and 80 °C for 20 min to inactivate the enzymes. The DNA was then purified 

via silica column purification and eluted with 30 µL dH2O.  

3.9.2.2 Preparation of DNA for Deep Sequencing 

The DNA was prepared for Illumina sequencing and genetically barcoded for 

population identification by two successive PCR reactions. The first PCR specifically 

amplified the region of DNA encoding for Gp2: PCR conditions: 0.02 U/µL Q5 High-

Fidelity DNA Polymerase (New England Biolabs), 1X Q5 reaction buffer, 200 µM dNTPs, 

0.1 µM of 5-forward and 5-reverse primers to add length diversity for sequencing (SI 

Appendix, DNA Table C), 15 µL (half) of the DNA extracted from yeast, diluted to 50 µL 

total volume with dH2O. Thermocycling routine: 98 °C for 30 s, (98 °C for 10 s, 60 °C for 

30 s, 72 °C for 20 s) x 16 cycles, 72 °C for 120 s. Unreacted primers were then removed 

by the addition of 4 U ExoI (37 °C for 30 min, inactivated at 80 °C for 20 min). The second 

PCR added trial-specific I5 barcode and a gate-specific I7 barcode. PCR conditions: 0.02 

U/µL Q5 High-Fidelity DNA Polymerase, 1X Q5 reaction buffer, 200 µM dNTPs, 0.5 µM 

of forward primer (SI Appendix, DNA Table D) and reverse primer (SI Appendix, DNA 

Table E), 1 µL of the DNA from the first PCR, diluted to 50 µL total volume with dH2O. 

Thermocycling routine: 98 °C for 30 s, (98 °C for 10 s, 67 °C for 30 s, 72 °C for 20 s) x 16 

cycles, 72 °C for 120 s. The DNA was purified via agarose gel extraction and quantified 

via absorbance on a NanoDrop. DNA within the same assay was mixed at the ratio of cells 

collected during FACS. DNA across assays were evenly mixed for each trial.  
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3.9.3 Split GFP Assay 

3.9.3.1 Creation of GFP1-10 Bacterial Production Plasmid 

Plasmid pcDNA3.1-GFP(1-10) was a gift from Bo Huang157 (Addgene plasmid 

70219). The fragment encoding for GFP1-10 was isolated via PCR. PCR conditions: 0.02 

U/µL Q5 High-Fidelity DNA Polymerase, 1X Q5 reaction buffer, 200 µM dNTPs, 0.5 µM 

forward and reverse primers (SI Appendix, DNA Table F), 1 ng pcDNA3.1-GFP(1-10), 

diluted  to 50 µL with dH2O. Thermocycling routine: 98 °C for 30 s, (98 °C for 10 s, 72 °C 

for 50 s) x 30 cycles, 72 °C for 120 s. The DNA was then purified via silica column.  

Plasmid pBAD-His-6-Sumo-TEV-LIC cloning vector (8S) was a gift from Scott 

Gradia (Addgene plasmid 37507). The plasmid was modified via restriction enzyme 

digestion (final construct: His6-GFP1-10, Plasmid Sequence 2). Digestion conditions: 2 µg 

plasmid, 20 U NheI-HF, 20 U BamHI-HF, 5U Quick CIP, 1X CutSmart Buffer, diluted to 

50 µL with dH2O and incubated at 37 °C for 1 h. The plasmid was isolated via agarose gel 

extraction and silica column purification.  

GFP1-10 was inserted into the pBAD plasmid via NEBuilder® HiFi DNA Assembly 

(New England Biolabs): 25 ng of the digested vector, 2 ng of GFP1-10 encoding DNA, 5 

µL HiFi Master Mix, diluted to 10 µL with dH2O and was incubated at 50 °C for 20 min. 

The assembled plasmid was transformed into NEB 5-alpha Competent E. coli as per the 

manufacturer’s protocol using the ampicillin selection marker.  

3.9.3.2 Creation of GFP11 Production Plasmid 

A pET production plasmid was obtained134 and modified to serve as a non-

fluorescent control with a stop codon before the C-terminal GFP11 (final construct: MAS–

Stop–GSGGGGS–GFP11, Plasmid Sequence 3)..Two rounds of restriction enzyme 

digestion and HiFi assembly processes were used to complete construction. Digestion 1: 2 
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µg plasmid, 20 U NheI-HF, 20 U StyI, 5U Quick CIP, 1X CutSmart Buffer, diluted to 50 

µL with dH2O and incubated at 37 °C for 1 h The plasmid was isolated via agarose gel 

extraction and silica column purification. HiFi assembly 1: 30 ng plasmid, 2 ng pET-

GFP11 gBlock (SI Appendix, DNA Table G), 5 µL HiFi Master Mix, diluted to 10 µL with 

dH2O, incubated at 50 °C for 20 min, and transformed using the kanamycin selection 

marker. Digestion 2: 2 µg plasmid, 20 U NheI-HF, 20 U BamHI-HF, 5U Quick CIP, 1X 

CutSmart Buffer, diluted to 50 µL with dH2O and incubated at 37 °C for 1 h. The plasmid 

was isolated via agarose gel extraction and silica column purification. HiFi assembly 1: 30 

ng plasmid, 2 ng GFP11-stop insert (SI Appendix, DNA Table G), 5 µL HiFi Master Mix, 

filled to 10 µL with dH2O, incubated at 50 °C for 20 min, and transformed using kanamycin 

selection marker. 

3.9.3.3 Ligation of Gp2 Library into GFP11 Production Plasmid 

The Illumina prepared DNA resulting from the on-yeast protease assay (equal 

mixture of 6 reaction conditions of trial 1) was used as the source of the Gp2 library for the 

split GFP assay. The DNA was prepared for ligation via restriction enzyme digest. 

Digestion conditions: 1.25 µg DNA, 25 U NheI-HF, 25 U BamHI-HF, 1X CutSmart 

Buffer, filled to 62.5 µL with dH2O and incubated at 37 °C for 1 h. The digested DNA was 

isolated via agarose gel extraction and silica column purification. All pre-ligation gel 

extractions used Zymoclean Gel DNA Recovery Kits (Zymo Research). The GFP11 

plasmid was prepared for ligation in a similar process. Digestion conditions: 10 µg DNA, 

200 U NheI-HF, 200 U BamHI-HF, 50 U CIP, 1X CutSmart buffer, diluted to 500 µL with 

dH2O and incubated at 37 °C for 1 hour. 
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Five ligations were required to obtain more than 106 transformed colonies, 

providing 63% likelihood of sampling any clone of the subsampled library. Ligation 

conditions: 370 ng vector, 30 ng insert, 10,000 U T4 DNA Ligase (New England Biolabs), 

1X T4 Buffer, 1 mM ATP (New England Biolabs), filled to 100 µL with dH2O prepared 

on ice. The reaction was mixed via gentle pipetting and incubated at 22 °C for 15 min, 

followed by ligase deactivation via incubation at 60 °C for 10 min. The ligated DNA was 

purified and concentrated into 10 µL dH2O via MinElute PCR Purification Kit (Qiagen). 

The plasmids were transformed into NEB 5-alpha Electrocompetent E. coli following the 

manufacturer’s protocol using 2.5 µL of DNA per 25 µL of cells. An average of 2 x 105 

transformed cells was obtained per 100 µL ligation plated on LB agar plates containing 50 

mg/L kanamycin. Colonies were scraped from plates and miniprepped to transfer the DNA 

to production cell lines.  

3.9.3.4 Transformation of Split-GFP Production Cells 

The GFP1-10 plasmid was transformed into T7 Express lysY/Iq Competent E. coli 

(Iq, c3013, New England Biolabs) and SHuffle T7 Express lysY Competent E. coli (SH, 

c3030, New England Biolabs) following the manufacturer’s heat-shock protocol and using 

the ampicillin selection marker. A single colony from each bacterial strain was plucked 

and prepared for electroporation: the colony was grown in 100 mL SOB + Amp (2% 

tryptone, 0.5% yeast extract, 10 mM sodium chloride, 2.5 mM potassium chloride, 10 mM 

magnesium chloride, 10 mM magnesium sulfate, and 100 mg/L ampicillin in dH2O) to an 

optical density at 600 nm (OD600) of 0.5. Unless otherwise stated, strain Iq was grown at 37 

°C and strain SH was grown at 30 °C. The culture was then placed on wet ice for 15 min 

and centrifuged (5000g for 10 min). The cells were then resuspended and centrifuged twice 
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with 200 mL of 10% (v/v) glycerol in water. Finally, the cells were resuspended in the 

residual glycerol before flash freezing with liquid nitrogen and storage at -80 °C.  

The Gp2-GFP11
 plasmids were then electroporated into the prepared competent 

cells. Frozen cells were thawed on wet ice for 10 min. 20 ng of the plasmid was added to 

25 µL of cells and transferred to a cold 1 mm electroporation cuvette. The cells were 

shocked (2.0 kV, 200 Ω, 25 µF), resuspended in 975 µL SOC (2% tryptone, 0.5% yeast 

extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose 

in dH2O), and incubated for 1 h. The cells were plated on selective LB agar (containing 

100 mg/L ampicillin, and 50 mg/L kanamycin in dH2O). Transformations were repeated 

until >107 colonies were obtained.  The colonies were scraped from plates and grown in 

100 mL LB with 100 mg/L ampicillin and 100 mg/L kanamycin (LB+Amp+Kan) for two 

h. Aliquots were created by mixing 1 mL culture with 500 µL glycerol and storing at -80 

°C.  

3.9.3.5 Preparation of DNA for Deep Sequencing 

DNA was prepared for Illumina as above for the on-yeast protease assay: except 

for unique primers (SI Appendix, DNA Table H) and a 62 ºC annealing temperature in the 

first PCR. 

3.9.4 Split β-lactamase Assay 

3.9.4.1 Creation of Production Plasmid 

A pET production plasmid was obtained in house and modified via two rounds of 

restriction digest and HiFi assembly to create a non-functional lactamase control with a 

stop codon before the second half of the enzyme (final construct: β-lactamase1-196-

(G4S)2AS-Stop-GS(G4S)2-β-lactamase197-286, Plasmid Sequence 4). Digestion 1 conditions: 

2 µg plasmid, 20 U NdeI-HF, 20 U StyI-HF, 5 U Quick CIP, 1X CutSmart buffer, diluted 
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to 50 µL with dH2O and incubated at 37 °C for 1 h), gel extracted, and purified via silica 

column. HiFi assembly 1: 25 ng plasmid, 2 ng of each insert (Beta-Lac A+B, SI Appendix, 

DNA Table I), 10 µL HiFi Master Mix, filled to 20 µL with dH2O, reacted at 50 °C for 15 

min, and transformed using kanamycin selection marker. Digestion 2 conditions: 2 µg 

plasmid, 20 U NheI-HF, 20 U BamHI-HF, 5 U Quick CIP, 1X CutSmart Buffer, filled to 

50 µL with dH2O and incubated at 37 °C for 1 h), gel extracted, and purified via silica 

column. HiFi assembly 1: 25 ng plasmid, 2 ng insert (β stop insert, SI Appendix, DNA 

Table I), 10 µL HiFi Master Mix, diluted to 20 µL with dH2O, reacted at 50 °C for 15 min, 

and transformed using kanamycin selection marker. Plasmid for ligation was obtained via 

miniprep.  

3.9.4.2 Split β-lactamase Library Creation and Transformation into Production Cells 

The Illumina prepared DNA resulting from the split GFP assay (equal mixture of 2 

cell strains from trial 1) was used as the source of the Gp2 library. The DNA was prepared 

for ligation via restriction enzyme digest. Digestion conditions: 2 µg DNA, 20 U NheI-HF, 

20 U BamHI-HF, 1X CutSmart Buffer, diluted to 50 µL with dH2O and incubated at 37 °C 

for 1 h. The digested DNA was isolated via agarose gel extraction and silica column 

purification. All pre-ligation gel extractions utilized Zymoclean Gel DNA Recovery Kits 

(Zymo Research). The β-lactamase plasmid was prepared for ligation in a similar process. 

Digestion conditions: 10 µg DNA, 200 U NheI-HF, 200 U BamHI-HF, 50 U CIP, 1X 

CutSmart Buffer, diluted to 500 µL with dH2O and incubated at 37 °C for 1 h. 

Ligations were repeated, using the same conditions as for the split GFP pool above, 

to obtain more than 106 transformed colonies. Transformed cells were plated on LB agar 

plates containing 50 mg/L kanamycin. Colonies were scraped from plates and miniprepped 
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to transfer the DNA to production cell lines. The library was transformed into Iq and SH 

following the manufacturer’s heat-shock protocol and using the kanamycin selection 

marker. Transformations were replicated until more than 107 colonies were obtained. The 

colonies were scraped from plates and grown in 100 mL LB with 100 mg/L kanamycin for 

two h. Aliquots were created by mixing 1 mL culture with 500 µL glycerol and storing at 

-80 °C. 

3.9.4.3 Preparation of DNA for Deep Sequencing 

DNA was prepared for Illumina as above for the protease assay except for unique 

primers (SI Appendix, DNA Table J) and a 59 ºC annealing temperature in the first PCR. 

3.9.5 High-Throughput Assay Score Calculations 

3.9.5.1 Illumina Sequencing and Read Filtering 

The prepared DNA from each assay was sequenced via two SP lanes of an NovaSeq 

6000 (Illumina) with the help of the University of Minnesota Genomics Center. The first 

trial for all assays was sequenced in the first lane, and the second and third trials were 

equally mixed in a second lane after confirming the preliminary success of the first trial.  

Sequence analysis was performed using the computational resources of the 

Minnesota Supercomputing Institute utilizing USearch116 to merge, align, filter, denoise, 

and dereplicate the sequences. Merged reads were clipped to the region between NheI and 

BamHI prior to quality filtering, where we accepted sequences with less than one expected 

error based upon the reported quality scores of each nucleotide. A total of 832 x 106 

sequences passing filter were obtained (Trial 1: 434 x 106, Trial 2: 211 x 106, Trial 3: 188 

x 106).  

A contamination of DNA encoding for Gp2 with a PD-L1 binding paratope and 

framework mutations was experimentally confirmed in the on-yeast protease assay 
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sequencing primer stocks. Thus, these sequences were removed from the on-yeast assays 

but were included in the split GFP and split β-lactamase assays as the sequences were 

obtained from the on-yeast DNA.  

Beyond the physical contamination, an average of 56 x 106 unique sequences was 

obtained per trial, well beyond the expected max diversity of 1 x 106. We hypothesize the 

“true” sequences to have high observation frequency (most number of reads) and contain 

highly different sequences compared to “false” sequences (due to subsampling of 

theoretical library, it is unlikely to see two very similar sequences). We denoised each trial 

independently utilizing the UNOISE158 algorithm with observation minimums chosen for 

computational efficiency (Trial 1: 100 total reads, Trial 2 and 3: 50 total reads). A total of 

294,644 unique sequences observed in all three trials were obtained from denoising. We 

then mapped the filtered false sequences to the true sequence via 97% genetic similarity. 

Finally, 204,173 unique sequences for CC+¸CC-, and Stop were isolated via requiring 

100% genetic match of the conserved portion of Gp2. CC+ was identified via two cysteines 

located at each end of loop 1 (positions 7 & 12), whereas other sequences were classified 

CC-. Stop sequences contained at least one stop codon located inside either loop, but 

otherwise matched library design. No sequences containing synonymous codons were 

observed during the measurement of recombinant yield.   

3.9.6 Dot Blots to Quantify Expression 

3.9.6.1 Creation of Production Plasmid 

A pET production plasmid was obtained in-house and modified via restriction 

digest and HiFi assembly to create a His6-less negative control with a stop codon placed 

between the restriction sites. (final construct: V5-AS-Stop-GS-His6, Plasmid Sequence 5). 

Digestion conditions: 2 µg plasmid, 20 U NheI-HF, 20 U BamHI-HF, 5 U Quick CIP, 1X 
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CutSmart Buffer, diluted to 50 µL with dH2O and incubated at 37 °C for 1 h), gel extracted, 

and purified via silica column. HiFi assembly 1: 25 ng plasmid, 2 ng insert (SI Appendix, 

DNA Table K), 10 µL HiFi Master Mix, diluted to 20 µL with dH2O, incubated at 50 °C 

for 15 min, and transformed utilizing kanamycin selection marker. Plasmid for ligation was 

obtained via miniprep. 

3.9.6.2 Dot Blot Library Creation and Transformation into Production Cells 

DNA encoding for Gp2 variants for the dot blots were obtained from two sources: 

i) the Illumina prepared DNA resulting from the split β-lactamase assay (equal mixture of 

the no-ampicillin population from both cell strains in trial 1). ii) an oligopool 

(Oligopool.fasta, Twist Bioscience) encoding for the 2,000 most frequently observed Gp2 

variants found in all 10 assays of trial 1. The oligopool was amplified to create double 

stranded DNA: PCR conditions: 0.02 U/µL Q5 Hot Start High-Fidelity DNA Polymerase 

(New England Biolabs), 1X Q5 reaction buffer, 200 µM dNTPs, 0.5 µM primers (SI 

Appendix, DNA Table L), 10 ng of the oligopool resuspended at 1 ng/µL in EB (Epoch 

Life Science), diluted to 50 µL total volume with dH2O. Thermocycling routine: 98 °C for 

30 s, (98 °C for 10 s, 61 °C for 30 s, 72 °C for 20 s) x 12 cycles, 72 °C for 120 s. The 

amplified oligopool was silica column purified eluting with 50 µL dH2O.  

The DNA from each source was separately prepared for ligation via restriction 

enzyme digest. Digestion conditions: 2 µg DNA, 20 U NheI-HF, 20 U BamHI-HF, 1X 

CutSmart Buffer, filled to 50 µL with dH2O and incubated at 37 °C for 1 h. The digested 

DNA was isolated via agarose gel extraction and silica column purification. All pre-ligation 

gel extractions used Zymoclean Gel DNA Recovery Kits (Zymo Research). The His6 

production plasmid was prepared for ligation in a similar process. Digestion conditions: 2 
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µg DNA, 20 U NheI-HF, 20 U BamHI-HF, 1X CutSmart Buffer, diluted to 50 µL with 

dH2O and incubated at 37 °C for 1 hr. 

Ligations were repeated to obtain more than 103 transformed colonies, to obtain a 

feasible testable diversity of sequences. Ligation conditions: 37 ng vector, 3 ng insert, 

1,000 U T4 DNA Ligase (New England Biolabs), 1X T4 Buffer, 1 mM ATP (New England 

Biolabs), filled to 10 µL with dH2O prepared on ice. The reaction was mixed via gentle 

pipetting and incubated at 22 °C for 15 min, followed by ligase deactivation via incubation 

at 60 ° C for 10 min. The plasmids were heat-transformed into NEB 5-alpha Competent E. 

coli following the manufacturer’s protocol and using 2.5 µL of DNA per 25 µL of cells. 

Transformed cells were plated on LB agar plates containing 50 mg/L kanamycin. Colonies 

were scraped from plates and miniprepped to transfer the DNA to production cell lines. 

The library was transformed into Iq and SH following the manufacturer’s heat-shock 

protocol and using the kanamycin selection marker. Transformations were replicated until 

more than 103 colonies were obtained. Single colonies were grown in 1 mL LB+Kan for 

two hours in separate wells of a deep 96 well plate. Aliquots were created by mixing 1 mL 

culture with 500 µL glycerol and storing at -80 °C. 

3.9.6.3 Identifying Plate Location of Gp2 Variants 

We appended genetic barcodes representing the plate, row, and column via PCR 

while simultaneously preparing the sequences for Illumina sequencing. PCR 1 conditions: 

0.02 U/µL Q5 High-Fidelity DNA Polymerase (New England Biolabs), 1X Q5 reaction 

buffer, 200 µM dNTPs, 0.5 µM of a row-specific forward primer (SI Appendix, DNA Table 

M FApETV5N50X), 0.5 µM of a column-specific forward primer (SI Appendix, DNA 

Table M RApETN7XX), 1 µL bacterial culture, filled to 20 µL total volume with dH2O. 
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Thermocycling routine: 98 °C for 5 min, (98 °C for 10 s, 61 °C for 30 s, 72 °C for 20 s) x 

16 cycles, 72 °C for 120 s. The DNA for each plate was pooled at equal volume (2 µL) and 

the unreacted primers were then removed by the addition of 8 U ExoI (37 °C for 30 minutes, 

inactivated 80 °C for 20 min). The second PCR added a plate specific barcode. PCR 

conditions: 0.02 U/µL Q5 High-Fidelity DNA Polymerase, 1X Q5 reaction buffer, 200 µM 

dNTPs, 0.5 µM of forward primer (SI Appendix, DNA Table D) and reverse primer (SI 

Appendix, DNA Table E), 1 µL of the DNA from the first PCR, filled to 50 µL total volume 

with dH2O. Thermocycling routine: 98 °C for 30s, (98 °C for 10 s, 67 °C for 30 s, 72 °C 

for 20 s) x 16 cycles, 72 °C for 120 s. The DNA was isolated via agarose gel extraction and 

quantified via NanoDrop. DNA across plates and cell strain were equally mixed and 

sequenced via Illumina iSeq, aiming to obtain ~1,000 reads per well.  

Sequence analysis was performed using the computational resources of the 

Minnesota Supercomputing Institute utilizing USearch116 to merge, align, filter, denoise, 

and dereplicate the sequences. Merged reads were clipped to the region between NheI and 

BamHI prior to quality filtering, where we accepted sequences with less than one expected 

error based upon the reported quality scores of each nucleotide. To identify single-variant 

wells, the most abundant sequence had to have >100 reads, the next most sequence had to 

have <100 reads, and the top sequence had to occupy > 80% (DNA from β-lactamase) or 

> 40% (DNA from oligopool, changed based upon resequencing previously identified 

variants) of the total reads for a well. Sequences obtained from dot blot sequencing were 

genetically paired (requiring 100% matching) with sequences from HT assays. 
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3.9.6.4 Preparation of Protein Standard 

GaR was separately ligated into the production vector (final construct V5-GaR-

His6) and transformed following the same protocol used for the library of Gp2 variants, 

with the difference of transforming the post-ligation product directly into Iq via heat-shock 

transformation. A scrape from the frozen stock of GaR cells was grown in 5 mL LB+Kan 

overnight. Part of the overnight culture was added to 200 mL fresh LB+Kan at an OD600 

of 0.1 and grown for 90 min. The protein production was induced by the addition of 0.5 

mM IPTG. Production was continued for 2 h at 37 °C followed by centrifugation (3,000 g 

for 15 min) and freezing of the cell pellet at -80 °C overnight. The pellet was thawed by 

the addition of 2 mL lysis buffer: 1 mg/mL lysozyme (L6876, Millipore Sigma), 10 U/mL 

benzonase nuclease (E1014, Millipore Sigma), protease inhibitor pellet (A32953, Thermo 

Fisher Scientific), 20 mM sodium chloride, 2 mM magnesium chloride, 25 mM imidazole, 

5 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate hydrate (CHAPS), 

5% (v/v) glycerol, 50 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES) 

in dH2O at pH 8.0. The lysate and lysis buffer were shaken at 37 °C for 1 h to promote 

enzymatic activity. The soluble lysate was isolated via centrifugation (15,000g for 10 min) 

and filtered through a 0.22 µm membrane. GaR was isolated via immobilized metal affinity 

chromatography utilizing HisPur Cobalt Resin (89964, ThermoFisher Scientific); wash 

buffer: 500 mM sodium chloride, 20 mM HEPES, 20 mM imidazole, pH 7.4; elution 

buffer: as in wash but 500 mM imidazole. The protein was desalted on a PD-10 column 

(Fisher Scientific, eluted into 0.5 M sodium chloride, 20 mM HEPES, pH 7.4). The identity 

and purity were confirmed via matrix-assisted laser desorption/ionization (MALDI) and 

polyacrylamide gel electrophoresis (PAGE), and concentration was determined via 280 nm 

absorbance on a NanoDrop. The protein was diluted into 4 standard concentrations (103 
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ng/µL, 52 ng/µL, 26 ng/µL, and 13 ng/µL) and flash frozen in aliquots via liquid nitrogen 

and stored at -80 °C. On the day of use, the aliquot was thawed and 25 µL of protein was 

mixed with 25 µL of denaturing buffer (1 g/L SDS, 500 mM sodium chloride, 20 mM 

imidazole, 20 mM HEPES, pH 7.4) and incubated at 70 °C for 5 min.  

3.9.6.5 Quantification of Chemiluminescent Intensities 

Intensity measurements were quantified utilizing Fiji159,160. The average intensity 

of a constant diameter of a circular region of interest for each lysate impression was 

recorded. Ten randomly chosen background locations were also measured and subtracted 

from the intensity measurements. A row of standards (4 concentrations, each concentration 

in triplicate) was used to generate a linear standard curve from average intensity to yield 

(mg/L). To correct for non-specific binding of E. coli lysate proteins (not present in 

standard curve), the 75th percentile value of yield for wells containing Stop sequences in 

each trial was subtracted. Sequences with negative corrected yields were set to 0 mg/L. 

The final yield for model evaluation was reported as the average of three yield 

measurements, grown from separate starter cultures on different days. GaR was tested on 

each plate for both cell types to obtain an estimate of variance. It was observed that day-

to-day coefficient of variation (Iq: 43%, SH: 77%) was higher than plate-to-plate variation 

(Iq: 20%, SH: 25%). 

3.9.7 Identification of HT Assay Predictiveness 

3.9.7.1 Sequence Encoding 

To create models with the amino acid sequence, we only considered the amino acids 

in the modified paratope loops. To conserve possible interactions with the first/last position 

and the conserved residues of the protein, gap characters were placed in the middle of loops 
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during sequence alignment. The gap character was treated as a 21st amino acid during the 

one-hot encoding of the sequence.  
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3.10 Supplemental Figures  

 

Figure S3.1 - High-throughput (HT) Developability Assay Experimental Results 
For each HT assay class, the varying conditions are listed along with the short-hand code and the name of 

the relevant DataFrame (DF) columns which store assay scores. On-yeast protease and split GFP FACS gates 

represent polygons named during experimentation. The split β-lactamase assay included a pre-induction of 

the enzyme-POI fusion before introduction of ampicillin. The Minutes Grown in Amp. represents the amount 

of time until the culture begins to exit logarithmic growth phase based upon preliminary assay testing. Filtered 

Reads represents the number of merged and aligned paired-end reads matching design and was used as the 

denominator when calculating read frequency. The scores for each barcode were utilized when calculating 

the cell-averaged score (on-yeast protease and split GFP) or when calculating the change in frequency as a 

function of ampicillin concentration (slope uses scores not actual concentration).  

Reaction Conditions FACS Gate Barcode

for sequencing Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

P_PK37 P4 RPI 1 720,695            2,410,750        2,844,812        1,672,486            4,519,546          4,036,169          2.3 1.9 1.4 1.00 1.00 1.00

2.7 U/L Proteinase K P5 RPI 2 2,368,334        1,007,885        1,253,317        266,178               2,644,637          2,313,456          0.1 2.6 1.8 0.00 0.00 0.00

1g/L PBSA P6 RPI 3 2,463,131        997,983            1,168,086        6,940,582            1,178,588          2,284,648          2.8 1.2 2.0 0.67 0.33 0.67

37°C P7 RPI 4 1,931,957        1,822,412        574,143            4,607,090            3,110,116          1,311,519          2.4 1.7 2.3 0.33 0.67 0.33

DF: 'Sort1' Trial_Total 7,484,117        6,239,030        5,840,358        13,486,336         11,452,887       9,945,792          1.8 1.8 1.7

P_Urea P4 RPI 5 685,873            999,145            2,351,724        1,681,542            2,677,268          3,745,159          2.5 2.7 1.6 1.00 1.00 1.00

8 U/L Proteinase K P5 RPI 6 2,285,755        1,991,598        2,069,329        8,201,646            4,851,346          3,974,228          3.6 2.4 1.9 0.00 0.00 0.00

1g/L PBSA + 1.5M Urea P6 RPI 7 2,484,865        1,703,321        1,350,940        9,701,969            3,548,318          1,533,413          3.9 2.1 1.1 0.67 0.33 0.67

37°C P7 RPI 8 2,001,220        1,578,136        890,976            6,435,191            2,119,653          643,801             3.2 1.3 0.7 0.33 0.67 0.33

DF: 'Sort2' Trial_Total 7,457,713        6,272,200        6,662,969        26,020,348         13,196,585       9,896,601          3.5 2.1 1.5

P_Gdn P4 RPI 9 965,069            2,172,462        3,354,329        2,073,925            5,056,018          5,346,284          2.1 2.3 1.6 1.00 1.00 1.00

8 U/L Proteinase K P5 RPI 10 2,232,193        854,928            1,503,997        6,012,148            2,463,237          3,034,009          2.7 2.9 2.0 0.00 0.00 0.00

1g/L PBSA + 0.5M Guan. Cl P6 RPI 11 2,677,672        953,291            1,443,133        8,646,657            2,644,156          2,322,642          3.2 2.8 1.6 0.67 0.33 0.67

37°C P7 RPI 12 1,983,694        1,696,519        779,361            5,401,756            4,767,879          1,197,442          2.7 2.8 1.5 0.33 0.67 0.33

DF: 'Sort3' Trial_Total 7,858,628        5,677,200        7,080,820        22,134,486         14,931,290       11,900,377       2.8 2.6 1.7

P_PK55 P4 RPI 13 1,038,298        975,667            3,818,691        4,074,116            2,970,629          5,816,002          3.9 3.0 1.5 1.00 1.00 1.00

2.7 U/L Proteinase K P5 RPI 14 1,630,037        1,502,970        1,199,931        6,983,125            4,999,760          1,768,760          4.3 3.3 1.5 0.00 0.00 0.00

1g/L PBSA P6 RPI 15 2,811,130        1,500,134        1,583,723        11,636,056         3,663,161          2,760,792          4.1 2.4 1.7 0.67 0.33 0.67

55°C P7 RPI 16 1,891,089        1,722,690        778,051            6,224,207            3,513,008          1,154,484          3.3 2.0 1.5 0.33 0.67 0.33

DF: 'Sort4' Trial_Total 7,370,554        5,701,461        7,380,396        28,917,504         15,146,558       11,500,038       3.9 2.7 1.6

P_TL55 P4 RPI 17 673,921            642,686            1,365,763        888,416               1,539,959          938,231             1.3 2.4 0.7 1.00 1.00 1.00

0.5 mg/L Thermolysin P5 RPI 18 2,373,381        1,195,457        2,035,251        6,253,572            2,666,639          3,414,867          2.6 2.2 1.7 0.00 0.00 0.00

1g/L PBSA P6 RPI 19 2,377,624        1,614,995        2,244,466        10,723,597         5,647,975          4,096,671          4.5 3.5 1.8 0.67 0.33 0.67

55°C P7 RPI 20 2,158,807        2,509,968        1,331,840        7,945,702            5,549,800          2,015,879          3.7 2.2 1.5 0.33 0.67 0.33

DF: 'Sort5' Trial_Total 7,583,733        5,963,106        6,977,320        25,811,287         15,404,373       10,465,648       3.4 2.6 1.5

P_TL75 P4 RPI 21 831,137            1,789,334        3,515,289        2,373,154            5,432,257          5,463,062          2.9 3.0 1.6 1.00 1.00 1.00

0.67 mg/L Thermolysin P5 RPI 22 678,048            765,350            439,280            1,824,231            2,117,123          1,073,922          2.7 2.8 2.4 0.00 0.00 0.00

1g/L PBSA P6 RPI 23 3,440,571        2,473,794        1,631,852        19,234,215         7,899,114          3,420,569          5.6 3.2 2.1 0.67 0.67 0.67

75°C P7 RPI 24 1,766,041        911,971            370,949            7,565,981            2,379,129          759,692             4.3 2.6 2.0 0.33 0.33 0.33

DF: 'Sort6' Trial_Total 6,715,797        5,940,449        5,957,370        30,997,581         17,827,623       10,717,245       4.6 3.0 1.8

Cell Strain FACS Gate Barcode

for sequencing Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

G_Iq P4 RPI 25 7,663,303        4,546,079        5,763,479        25,814,818         8,996,792          7,589,725          3.4 2.0 1.3 0.00 0.00 0.00

T7 Express LysY/Iq P5 RPI 26 392,858            493,224            683,276            1,171,571            555,408             748,363             3.0 1.1 1.1 0.33 0.33 0.33

0.5mM IPTG, 2 g/L Arabinose P6 RPI 27 326,900            958,124            1,027,122        974,591               1,249,940          691,451             3.0 1.3 0.7 0.67 0.67 0.67

37°C P7 RPI 28 103,978            441,186            300,025            563,859               893,081             236,098             5.4 2.0 0.8 1.00 1.00 1.00

DF: 'Sort7' Trial_Total 8,487,039        6,438,613        7,773,902        28,524,839         11,695,221       9,265,637          3.4 1.8 1.2

G_SH P4 RPI 29 5,016,070        4,725,240        6,257,965        13,362,917         9,054,947          7,218,077          2.7 1.9 1.2 0.00 0.00 0.00

SHuffle T7 LysY P5 RPI 30 1,776,832        1,061,176        1,058,452        4,281,977            2,140,059          1,048,734          2.4 2.0 1.0 0.33 0.33 0.33

0.5mM IPTG, 2 g/L Arabinose P6 RPI 31 1,937,258        1,138,897        762,107            7,697,521            2,646,845          1,109,272          4.0 2.3 1.5 0.67 0.67 0.67

37°C P7 RPI 32 622,872            258,253            347,798            993,264               420,294             486,686             1.6 1.6 1.4 1.00 1.00 1.00

DF: 'Sort8' Trial_Total 9,353,032        7,183,566        8,426,322        26,335,679         14,262,145       9,862,769          2.8 2.0 1.2

Cell Strain [Ampicllin] Barcode

µg/mL for sequencing Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

β_Iq 0 RPI 33 215 245 210 21,901,407         8,629,167          9,787,372          22 9 10 0 0 0

T7 Express LysY/Iq 100 RPI 34 290 385 330 18,867,893         8,926,249          10,543,774       19 9 11 1 1 1

0.5mM IPTG, 2 hr pre-induction 333 RPI 35 385 415 380 23,876,165         10,263,891       12,901,984       24 10 13 2 2 2

37°C 1000 RPI 36 445 455 435 21,015,169         9,523,461          11,570,331       21 10 12 3 3 3

DF: 'Sort9' Trial_Total 85,660,634         37,342,768       44,803,461       86 37 45

β_SH 0 RPI 37 330 355 350 33,702,531         14,174,136       15,385,094       34 14 15 0 0 0

SHuffle T7 LysY 100 RPI 38 465 405 530 21,877,032         15,752,351       13,703,305       22 16 14 1 1 1

0.5mM IPTG, 4 hr pre-induction 666 RPI 39 740 690 770 20,017,792         14,048,228       13,405,895       20 14 13 2 2 2

30°C 6666 RPI 40 1155 885 1075 34,248,595         15,550,720       14,403,817       34 16 14 3 3 3

DF: 'Sort10' Trial_Total 109,845,950       59,525,435       56,898,111       110 60 57

Filtered Reads Score of BarcodeReads/Cell

Reads/Cell

Reads/Diversity

Filtered Reads

Filtered Reads Score of Barcode

Score of Barcode

Split β-lactamase

Split GFP

On-Yeast Protease

Cells Collected

Cells Collected

Minutes Grown in Amp.
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Figure S3.2 - Tabulated Gp2 Library Developability Performance 

Total Sequences: all Stop, CC-, and CC+ sequences observed in all 3 trials per assay. Median Observations 

per Trial for on-yeast Protease and Split GFP assays measured observations as the number of cells collected 

in all gates per trial. Split β-Lactamase measured observations as the number of reads in the no-ampicillin 

control due to anticipated loss of sequences which fail to replicate in antibiotic-containing conditions.  

Average Standard Deviation represents the square root of the mean (by unique sequence) of experimental 

variance across 3 independent trials. % Stop < GaR is the percentage of unique stop codon sequences for 

which the assay score was significantly lower than the GaR score (one-way student’s t-test, p<0.05). For βIq 

and βSH, % Stop > GaR is also displayed. CC- < CC+ tests the hypothesis that sequences with cysteines at 

positions 7 and 12 significantly increase assay score (one-way Mann-Whitney U test). For βIq and βSH, the 

opposite hypothesis, CC- > CC+, is displayed. For YieldIq, the two-sided Mann-Whitney tested is displayed. 

  

 

Figure S3.3 - Split β-lactamase Growth Curves of Unmixed Stop and GaR and mixed 

Library 
The growth curves of the control sequences grown in individual wells and the pooled library of cells. The 

black bar represents the cell density at which the library was collected for sequencing. 
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Figure S3.4 - Correlation of yields between cellular strains suggests shared 

information 
a) Scatter plot of recombinant soluble yield of 64 (CC+, orange: 53, CC-, blue: 11) unique Gp2 mutants 

produced in both bacterial strains as measured by chemiluminescent dot blot. The Spearman’s rank 

correlation coefficient (ρ) is shown for each sequence class in the upper left corner. b) Scatter plot of the 

same sequences but utilizing the transformed yield used during HT assay predictions (see Figure S6). 
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Figure S3.5 - Yeo-Johnson power transformation and normalization of yield 
Transformation was performed to remove heteroscedasticity (increasing experimental error with increasing 

yield). A single transformation parameter (λ = -0.324) was trained using only those sequences utilized in 

cross-validation for both libraries (CC+: orange, CC-: blue) and production strains (Iq: circle, SH: cross). a) 

Scatter plot of the yield for unique Gp2 sequences versus the trial-to-trial (n=3) standard deviation showing 

an increasing trend.  b) Scatter plot of the measured yield via calibration curve of the chemiluminescent dot 

blot versus the transformed yield used for model evaluation. c,d) Scatter plots showing the removal of 

increasing experimental error with increasing transformed yield. 
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Figure S3.6 - Tabulated performance of models 
Mean squared error ± standard deviation, CV: n=10 repetitions of 10-fold cross-validation. Test: n=10 models 

of same architecture with varying random state during training). CV predicted the yield of 195 unique 

sequences (Iq: 73, SH: 122, Both: 39). Test1 (44 unique, Iq: 26, SH 21, Both: 3) and Test2 (97 unique, Iq: 57, 

SH: 46, Both: 6) sequences were independent of model training and were evaluated to determine the model 

generalization. 
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Figure S3.7 - HT assays improve ability to classify sequences with increased 

developability 
The independent test sequences were classified as above or below the median yield per class: Strain Iq 

transformed yield cutoff = -0.69, n=57 sequences. Strain SH transformed yield cutoff = 0.59, n=46 sequences. 

The predictive models were assessed by a,b) area under receiver operator curve (AUC) or c,d) the average 

precision weighted by the increase in recall (AP). 
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Figure S3.8 - Dev+ sitewise amino acid enrichments displays cysteine preference for 

models when utilizing HT assay scores 
With (a,b) and without (c,d) sequence information. The predictive performance of both sets of model inputs 

was not statistically different. This analysis demonstrates the enrichment of cysteine was trained via HT 

assays, rather than an effect of the inclusion of sequence information in the model. 
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Figure S3.9 - Sitewise enrichment is modified depending on cysteine inclusion outside 

of positions 7 and 12 
Dev+ sequences were predicted to have a transformed yield >0 for strain Iq and >0.75 for Strain SH. Sitewise 

amino acid enrichment was calculated as the log2 change in frequency of Dev+ versus all predicted sequences. 

a,b) Predicted recombinant yield and enriched amino acids for sequences containing cysteines only at 

positions 7 and 12.  c,d) Predicted recombinant yield and enriched amino acids for sequence containing 

cysteines at positions 7 and 12 and at least one other position. 
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Figure S3.10 - Cysteine Enrichment Independent of On-Yeast Protease Assay 
The distributions of experimentally measured yield via dot-blot in a) strain Iq and b) strain SH broken down 

by the number of cysteines. The sitewise and overall preference of cysteines in highly developability 

sequences was also analyzed by c-e) an OH sequence-based model and f-h) a model utilizing assays GSH and 

βSH. The Dev+ predicted yield thresholds were adjusted to isolate approximately 15% of sequences with 

highest developability. Error bars: 1 / number of predicted sequences. 
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Figure S3.11 - Correlation feature selection (CFS) confirms the selection of most 

predictive HT assay conditions 
a) The Spearman’s rank correlation coefficient (ρ) and b) the mutual information (MI) between HT assays 

and yield. c) Scatter plot of CFS as calculated by ρ (left) or MI (right) versus predictive loss for the best 

model architecture (top, best of: Ridge, SVM, Forest, FNN) or a linear model (bottom, Ridge) for the 1023 

combinations of HT assays. The ρ between CFS and model loss is presented in the lower-left corner. d) 

Comparison of the trial-to-average mutual information of yield compared to the HT assay-yield mutual 

information. 
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Figure S3.12 - Non-significant correlation between observation frequency and 

predictive accuracy suggests limited effect of increased sequence observation 
a) Distribution of sequence observation frequency (averaged across trials) for sequences synthesized via dot-

blot versus all sequences observed during HT assays. b) Scatter plot comparing the sequence observation 

count (averaged across trials and HT assays) and the predictive loss of a model utilizing OH sequence and 

assays PPK37, GSH, and βSH. The Spearman’s rank correlation (ρ) is presented for each strain.  
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Figure S3.13 - Effect of the number of HT assay populations collected 
a) Comparison tables describing the scoring strategy when utilizing 4 populations or 2 populations. The on-

yeast protease and split GFP assay’s flow cytometry gates were combined by assigning the same score to 

sequences collected in different gates as described by the value within the parenthesis. b) The ability to 

predict yield when utilizing two populations compared to utilizing all four collected populations. Error bars 

represent the standard deviation in stochastically trained models. 
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Figure S3.14 - Effect of the number of HT trial replicates 
a-c) The trial-to-trial scatter plots with marginal distributions for 45,433 unique sequences. The Pearson’s r 

and Spearman’s ρ is printed in the upper corner. d) The ability to predict yield when utilizing a subset of the 

trials. Each point represents a unique combination of trials, with a horizontal bar representing the average 

performance. 

 

 

3.11 DNA Tables 

DNA Table 3.A - Primers for Gp2 library construction via PCR addition/amplification 

1. geneamp5 CGACGATTGAAGGTAGATACCCATACG 

2. W5 CGACGATTGAAGGTAGATACCCATACGACGTTCCAGACTACGCTCTGCAG 

3. W5 G4S TTCCAGACTACGCTCTGCAGGCTAGTAGTGGTGGTGGTTCTGGTGGTGGTGGTTCTGGTG 

4. G4S Gp2 GGTTCTGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTGCTAGCAAATTTTGGGCGACTGTA 

5. Gp2 1 8 AAATTTTGGGCGACTGTANNKNNKNNKNNKNNKNNKNNKNNKTTTGAGGTGCCGGTGTAT 
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6. Gp2 1 7 AAATTTTGGGCGACTGTANNKNNKNNKNNKNNKNNKNNKTTTGAGGTGCCGGTGTAT 

7. Gp2 1 6 AAATTTTGGGCGACTGTANNKNNKNNKNNKNNKNNKTTTGAGGTGCCGGTGTAT 

8. Gp2 1 cys 6 AAATTTTGGGCGACTGTATGTNNKNNKNNKNNKNNKNNKTGTTTTGAGGTGCCGGTGTAT 

9. Gp2 1 cys 5 AAATTTTGGGCGACTGTATGTNNKNNKNNKNNKNNKTGTTTTGAGGTGCCGGTGTAT 

10. Gp2 1 cys 4 AAATTTTGGGCGACTGTATGTNNKNNKNNKNNKTGTTTTGAGGTGCCGGTGTAT 

11. Gp2 mid TGAGGTGCCGGTGTATGCTGAGACCTTAGACGAAGCTCTTCAGTTAGCTGAATGGCAGTA 

12. Gp2 2 8 TTAGCTGAATGGCAGTATNNKNNKNNKNNKNNKNNKNNKNNKGTGACCCGCGTGCGTCCG 

13. Gp2 2 7 TTAGCTGAATGGCAGTATNNKNNKNNKNNKNNKNNKNNKGTGACCCGCGTGCGTCCG 

14. Gp2 2 6 TTAGCTGAATGGCAGTATNNKNNKNNKNNKNNKNNKGTGACCCGCGTGCGTCCG 

15. Gp2 W3 GTGACCCGCGTGCGTCCGGGATCCGAACAAAAGCTTAT 

16. W3 GGATCCGAACAAAAGCTTATTTCTGAAGAGGACTTGTAATAGCTCGAGAT 

17. geneamp3 ATCTCGAGCTATTACAAGTCCTCTTC 

 

DNA Table 3.B - Primer used to create negative control/baseline vector for on-yeast 

protease screening 

Pct-stop-myc insert TTCCAGACTACGCTCTGCAGGCTAGCTAATAGATAAGTAGGGGATCCGAACAAAAGCTTATTTCT 

 

DNA Table 3.C - PCR1 primers for Illumina preparation of on-yeast protease 

screening 

FA1GSmyc TTTCCCTACACGACGCTCTTCCGATCTNNNNTGGTGGTTCTGCTAGC 

FA2GSmyc TTTCCCTACACGACGCTCTTCCGATCTNNNNNTGGTGGTTCTGCTAGC 

FA3GSmyc TTTCCCTACACGACGCTCTTCCGATCTNNNNNNTGGTGGTTCTGCTAGC 

FA4GSmyc TTTCCCTACACGACGCTCTTCCGATCTNNNNNNNTGGTGGTTCTGCTAGC 

FA5GSmyc TTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNTGGTGGTTCTGCTAGC 

RA1Gp2-myc GTTCAGACGTGTGCTCTTCCGATCTNNNNTAAGCTTTTGTTCGGATCC 

RA2Gp2-myc GTTCAGACGTGTGCTCTTCCGATCTNNNNNTAAGCTTTTGTTCGGATCC 

RA3Gp2-myc GTTCAGACGTGTGCTCTTCCGATCTNNNNNNTAAGCTTTTGTTCGGATCC 

RA4Gp2-myc GTTCAGACGTGTGCTCTTCCGATCTNNNNNNNTAAGCTTTTGTTCGGATCC 

RA5Gp2-myc GTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNTAAGCTTTTGTTCGGATCC 

 

DNA Table 3.D - PCR2 Forward primers for Illumina sequencing with trial specific 

barcodes 
Barcode highlighted in red. Note: Trial 1 was run on a separate Novaseq and thus did not have an FB barcode. 

Trial 1 Old FB AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT 

Trial 2 FB-2 AATGATACGGCGACCACCGAGATCTACACCTCTCTATACACTCTTTCCCTACACGACGCTCTT 

Trial 3 FB-3 AATGATACGGCGACCACCGAGATCTACACTATCCTCTACACTCTTTCCCTACACGACGCTCTT 
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DNA Table 3.E - PCR2 reverse primers for Illumina sequencing with gate specific 

barcodes 

RB: 5’- CAA GCA GAA GAC GGC ATA CGA GAT [Barcode] GTG ACT GGA GTT CAG ACG 

TGT GCT CTT CC 

RPI 1 CGTGAT RPI 13 TTGACT RPI 25 ATCAGT RPI 37 ATTCCG 

RPI 2 ACATCG RPI 14 GGAACT RPI 26 GCTCAT RPI 38 AGCTAG 

RPI 3 GCCTAA RPI 15 TGACAT RPI 27 AGGAAT RPI 39 GTATAG 

RPI 4 TGGTCA RPI 16 GGACGG RPI 28 CTTTTG RPI 40 TCTGAG 

RPI 5 CACTGT RPI 17 CTCTAC RPI 29 TAGTTG   

RPI 6 ATTGGC RPI 18 GCGGAC RPI 30 CCGGTG   

RPI 7 GATCTG RPI 19 TTTCAC RPI 31 ATCGTG   

RPI 8 TCAAGT RPI 20 GGCCAC RPI 32 TGAGTG   

RPI 9 CTGATC RPI 21 CGAAAC RPI 33 CGCCTG   

RPI 10 AAGCTA RPI 22 CGTACG RPI 34 GCCATG   

RPI 11 GTAGCC RPI 23 CCACTC RPI 35 AAAATG   

RPI 12 TACAAG RPI 24 GCTACC RPI 36 TGTTGG   

 

DNA Table 3.F - Primers used to amplify GFP1-10 from obtained plamid with overlaps 

to allow for Gibson assembly into pBAD plasmid 

GFP1-10 amp top ATGGTTCTTCTATGGCTAGCATGTCCAAAGGAGAAGAACTGTTTACC 

GFP1-10 amp bottom CCAAAACAGCCAAGGGATCCTTTTTCATTTGGATCTTTGCTCA 

 

DNA Table 3.G - DNA used to add GFP11 to pET and to add the stop codon for the 

negative control 

pET-GFP11 gblock  CTTTAAGAAGGAGATATACATATGGCTAGCGCGTGGGGCGGATCCGGTGGAGGTGGATC

GCGTGATCACATGGTATTACATGAATACGTGAACGCTGCTGGGATTACATGATTAACTAA

ACGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTG
AGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGA 

GFP11-stop insert AGGAGATATACATATGGCTAGCTAATAGATAAGTAGGGGATCCGGTGGAGGTGGAT 

 

DNA Table 3.H - PCR1 primers for illumina preparation of split-GFP assay 

FApETN501 TTTCCCTACACGACGCTCTTCCGATCTNNNNTAGATCGCAAGGAGATATACATATGGCTAGC 

FApETN502 TTTCCCTACACGACGCTCTTCCGATCTNNNNNCTCTCTATAAGGAGATATACATATGGCTAGC 

FApETN503 TTTCCCTACACGACGCTCTTCCGATCTNNNNNNTATCCTCTAAGGAGATATACATATGGCTAGC 

FApETN504 TTTCCCTACACGACGCTCTTCCGATCTNNNNNNNAGAGTAGAAAGGAGATATACATATGGCTAGC 

FApETN505 TTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGTAAGGAGAAGGAGATATACATATGGCTAGC 

RA1 gfp GTTCAGACGTGTGCTCTTCCGATCTNNNNCCTCCACCGGATCC 

RA2 gfp GTTCAGACGTGTGCTCTTCCGATCTNNNNNCCTCCACCGGATCC 

RA3 gfp GTTCAGACGTGTGCTCTTCCGATCTNNNNNNCCTCCACCGGATCC 

RA4 gfp GTTCAGACGTGTGCTCTTCCGATCTNNNNNNNCCTCCACCGGATCC 

RA5 gfp GTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNCCTCCACCGGATCC 
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DNA Table 3.I - gBlocks for split β-lactamase plasmid 

DNA Table 3.J - PCR1 primers for Illumina preparation of split β-lactamase assay 

FA1 blac TTTCCCTACACGACGCTCTTCCGATCTNNNNGAGGCAGTGCTAGC 

FA2 blac TTTCCCTACACGACGCTCTTCCGATCTNNNNNGAGGCAGTGCTAGC 

FA3 blac TTTCCCTACACGACGCTCTTCCGATCTNNNNNNGAGGCAGTGCTAGC 

FA4 blac TTTCCCTACACGACGCTCTTCCGATCTNNNNNNNGAGGCAGTGCTAGC 

FA5 blac TTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGAGGCAGTGCTAGC 

RA1 blac GTTCAGACGTGTGCTCTTCCGATCTNNNNCTAGAGTAAGTAGTTCGCTAC 

RA2 blac GTTCAGACGTGTGCTCTTCCGATCTNNNNNCTAGAGTAAGTAGTTCGCTAC 

RA3 blac GTTCAGACGTGTGCTCTTCCGATCTNNNNNNCTAGAGTAAGTAGTTCGCTAC 

RA4 blac GTTCAGACGTGTGCTCTTCCGATCTNNNNNNNCTAGAGTAAGTAGTTCGCTAC 

RA5 blac GTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNCTAGAGTAAGTAGTTCGCTAC 

 

DNA Table 3.K - Insert to create pET-V5-stop-His6 

pET-v5-stop-his6 
insert 

ACTTTAAGAAGGAGATATACATATGGGCAAACCGATTCCTAATCCGCTTTTAGGTTTGGATAGTAC
GGCTAGCTAATAGATAAGTAGGGGATCCCACCATCACCATCATCACT 

 

DNA Table 3.L - PCR primers to amplify the Twist Oligopool 

OP_fwd TTGGATAGTACGGCTAGC 

OP_rev GGTGATGGTGGGATCC 

 

gblock A AATTTTGTTTAACTTTAAGAAGGAGATATACATATGATGAGTATTCAACATTTCCGTGTCGCCCTTATT

CCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCT

GAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGA
GTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTAT

CCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAG

TACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCA
TAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAAC

CGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAG

CCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATT
AACTGGCGGTGGTGGCGGAAGTGGAGGCGGAGGCAGTGCTAGCAAGTGTTTGAAGTGGGCTGGATCC

GGAGGAGGCGGAAGTGGAGGAGGAGGTAGC 

GAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGAC
CACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGG

TCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGAC

GGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAG
CATTGGTAATGATTAACTAAACGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA 

gblock B GGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAA

CCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTT 

β stop insert GGAGGCGGAGGCAGTGCTAGCTAATAGATAAGTAGGGGATCCGGAGGAGGCGGAAGT 
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DNA Table 3.M - PCR1 primers with row/column specific barcodes to identify the 

location of the sequence 

FApETV5N501 TTTCCCTACACGACGCTCTTCCGATCTNNNNTAGATCGCTTGGATAGTACGGCTAGC 

FApETV5N502 TTTCCCTACACGACGCTCTTCCGATCTNNNNNCTCTCTATTTGGATAGTACGGCTAGC 

FApETV5N503 TTTCCCTACACGACGCTCTTCCGATCTNNNNNNTATCCTCTTTGGATAGTACGGCTAGC 

FApETV5N504 TTTCCCTACACGACGCTCTTCCGATCTNNNNNNNAGAGTAGATTGGATAGTACGGCTAGC 

FApETV5N505 TTTCCCTACACGACGCTCTTCCGATCTNNNNGTAAGGAGTTGGATAGTACGGCTAGC 

FApETV5N506 TTTCCCTACACGACGCTCTTCCGATCTNNNNNACTGCATATTGGATAGTACGGCTAGC 

FApETV5N507 TTTCCCTACACGACGCTCTTCCGATCTNNNNNNAAGGAGTATTGGATAGTACGGCTAGC 

FApETV5N508 TTTCCCTACACGACGCTCTTCCGATCTNNNNNNNCTAAGCCTTTGGATAGTACGGCTAGC 

RApETN701 GTTCAGACGTGTGCTCTTCCGATCTNNNNTCGCCTTAGGTGATGGTGGGATCC 

RApETN702 GTTCAGACGTGTGCTCTTCCGATCTNNNNNCTAGTACGGGTGATGGTGGGATCC 

RApETN703 GTTCAGACGTGTGCTCTTCCGATCTNNNNNNTTCTGCCTGGTGATGGTGGGATCC 

RApETN704 GTTCAGACGTGTGCTCTTCCGATCTNNNNNNNGCTCAGGAGGTGATGGTGGGATCC 

RApETN705 GTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNAGGAGTCCGGTGATGGTGGGATCC 

RApETN706 GTTCAGACGTGTGCTCTTCCGATCTNNNNCATGCCTAGGTGATGGTGGGATCC 

RApETN707 GTTCAGACGTGTGCTCTTCCGATCTNNNNNGTAGAGAGGGTGATGGTGGGATCC 

RApETN708 GTTCAGACGTGTGCTCTTCCGATCTNNNNNNCCTCTCTGGGTGATGGTGGGATCC 

RApETN709 GTTCAGACGTGTGCTCTTCCGATCTNNNNNNNAGCGTAGCGGTGATGGTGGGATCC 

RApETN710 GTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNCAGCCTCGGGTGATGGTGGGATCC 

RApETN711 GTTCAGACGTGTGCTCTTCCGATCTNNNNNTGCCTCTTGGTGATGGTGGGATCC 

RApETN712 GTTCAGACGTGTGCTCTTCCGATCTNNNNNNTCCTCTACGGTGATGGTGGGATCC 

 

3.12 Plasmid Sequences 

3.12.1 pCT-HA-stop-Myc 

Resistance: Ampicillin 

Use:  Yeast surface display with myc and no linker unless included in insert. Digest with PstI 

and BamHI, and electroporate with geneamp3/5 PCR’d insert 

Summary: 

Aga2--Spacer--FactorXa--HA--PstI--NheI—STOP-BamHI--Myc--2Stop--XhoI--Terminator....  

Sequence: 

ACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAG

GACGGATCGCTTGCCTGTAACTTACACGCGCCTCGTATCTTTTAATGATGGAATAATTTGGGA

ATTTACTCTGTGTTTATTTATTTTTATGTTTTGTATTTGGATTTTAGAAAGTAAATAAAGAAGGT

AGAAGAGTTACGGAATGAAGAAAAAAAAATAAACAAAGGTTTAAAAAATTTCAACAAAAAG

CGTACTTTACATATATATTTATTAGACAAGAAAAGCAGATTAAATAGATATACATTCGATTAA

CGATAAGTAAAATGTAAAATCACAGGATTTTCGTGTGTGGTCTTCTACACAGACAAGATGAAA

CAATTCGGCATTAATACCTGAGAGCAGGAAGAGCAAGATAAAAGGTAGTATTTGTTGGCGAT

CCCCCTAGAGTCTTTTACATCTTCGGAAAACAAAAACTATTTTTTCTTTAATTTCTTTTTTTACT
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TTCTATTTTTAATTTATATATTTATATTAAAAAATTTAAATTATAATTATTTTTATAGCACGTGA

TGAAAAGGACCCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTT

CTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATA

TTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCA

TTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAG

TTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTT

CGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTA

TCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTG

GTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATG

CAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGG

ACCGAAGGAGCTAACCGCTTTTTTTCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTG

GGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAA

TGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAAT

TAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTG

GCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCAC

TGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGCAGTCAGGCAACTA

TGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGT

CAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGAT

CTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCAC

TGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTA

ATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAG

CTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTT

CTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCT

CTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGAC

TCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACA

GCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCATTGAGAAA

GCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAAC

AGGAGAGCGCACGAGGGAGCTTCCAGGGGGGAACGCCTGGTATCTTTATAGTCCTGTCGGGT

TTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCCGAGCCTATGGA

AAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTT

CTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACC

GCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCC

CAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGT

TTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTACCTCACTCATTAGG

CACCCCAGGCTTTACACTTTATGCTTCCGGCTCCTATGTTGTGTGGAATTGTGAGCGGATAACA

ATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTCGGAATTAACCCTCACTAAAG

GGAACAAAAGCTGGGTACCCGACAGGTTATCAGCAACAACACAGTCATATCCATTCTCAATTA

GCTCTACCACAGTGTGTGAACCAATGTATCCAGCACCACCTGTAACCAAAACAATTTTAGAAG

TACTTTCACTTTGTAACTGAGCTGTCATTTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTG

GATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATAT

ACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCT

AAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTAC

GGATTAGAAGCCGCCGAGCGGGTGACAGCCCTCCGAAGGAAGACTCTCCTCCGTGCGTCCTC

GTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAA

AGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCAC

AAACCTTCAAATGAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGC

CTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATG

CAAAAACTGCATAACCACTTTAACTAATACTTTCAACATTTTCGGTTTGTATTACTTCTTATTC

AAATGTAATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGA

AAAAACTATAGAATTCTACTTCATACATTTTCAATTAAGATGCAGTTACTTCGCTGTTTTTCAA

TATTTTCTGTTATTGCTTCAGTTTTAGCACAGGAACTGACAACTATATGCGAGCAAATCCCCTC

ACCAACTTTAGAATCGACGCCGTACTCTTTGTCAACGACTACTATTTTGGCCAACGGGAAGGC
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AATGCAAGGAGTTTTTGAATATTACAAATCAGTAACGTTTGTCAGTAATTGCGGTTCTCACCC

CTCAACAACTAGCAAAGGCAGCCCCATAAACACACAGTATGTTTTTAAGGACAATAGCTCGA

CGATTGAAGGTAGATACCCATACGACGTTCCAGACTACGCTCTGCAGGCTAGCTAATAGATAA

GTAGGGGATCCGAACAAAAGCTTATTTCTGAAGAGGACTTGTAATAGCTCGAGATCTGATAA

CAACAGTGTAGATGTAACAAAATCGACTTTGTTCCCACTGTACTTTTAGCTCGTACAAAATAC

AATATACTTTTCATTTCTCCGTAAACAACATGTTTTCCCATGTAATATCCTTTTCTATTTTTCGT

TCCGTTACCAACTTTACACATACTTTATATAGCTATTCACTTCTATACACTAAAAAACTAAGAC

AATTTTAATTTTGCTGCCTGCCATATTTCAATTTGTTATAAATTCCTATAATTTATCCTATTAGT

AGCTAAAAAAAGATGAATGTGAATCGAATCCTAAGAGAATTGAGCTCCAATTCGCCCTATAG

TGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGT

TACCCAACTTAATCGCCTTGCAGCACATCCCCCCTTCGCCAGCTGGCGTAATAGCGAAGAGGC

CCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCGACGCGCCCTG

TAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCA

GCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCC

CGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACC

CCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTC

GCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACT

CAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTA

AAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGTTTACAATT

TCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCAGGCAAGTGCACAA

ACAATACTTAAATAAATACTACTCAGTAATAACCTATTTCTTAGCATTTTTGACGAAATTTGCT

ATTTTGTTAGAGTCTTTTACACCATTTGTCTCCACACCTCCGCTTACATCAACACCAATAACGC

CATTTAATCTAAGCGCATCACCAACATTTTCTGGCGTCAGTCCACCAGCTAACATAAAATGTA

AGCTTTCGGGGCTCTCTTGCCTTCCAACCCAGTCAGAAATCGAGTTCCAATCCAAAAGTTCAC

CTGTCCCACCTGCTTCTGAATCAAACAAGGGAATAAACGAATGAGGTTTCTGTGAAGCTGCAC

TGAGTAGTATGTTGCAGTCTTTTGGAAATACGAGTCTTTTAATAACTGGCAAACCGAGGAACT

CTTGGTATTCTTGCCACGACTCATCTCCATGCAGTTGGACGATATCAATGCCGTAATCATTGAC

CAGAGCCAAAACATCCTCCTTAGGTTGATTACGAAACACGCCAACCAAGTATTTCGGAGTGCC

TGAACTATTTTTATATGCTTTTACAAGACTTGAAATTTTCCTTGCAATAACCGGGTCAATTGTT

CTCTTTCTATTGGGCACACATATAATACCCAGCAAGTCAGCATCGGAATCTAGAGCACATTCT

GCGGCCTCTGTGCTCTGCAAGCCGCAAACTTTCACCAATGGACCAGAACTACCTGTGAAATTA

ATAACAGACATACTCCAAGCTGCCTTTGTGTGCTTAATCACGTATACTCACGTGCTCAATAGTC

ACCAATGCCCTCCCTCTTGGCCCTCTCCTTTTCTTTTTTCGACCGAATTAATTCTTAATCGGCAA

AAAAAGAAAAGCTCCGGATCAAGATTGTACGTAAGGTGACAAGCTATTTTTCAATAAAGAAT

ATCTTCCACTACTGCCATCTGGCGTCATAACTGCAAAGTACACATATATTACGATGCTGTCTAT

TAAATGCTTCCTATATTATATATATAGTAATGTCGTTTATGGTGCACTCTCAGTACAATCTGCT

CTGATGCCGCATAGTTAAGCCAGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGG

GCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGT

CAGAGGTTTTCACCGTCATCACCGAAACGCGCGA 

Protein: 

Aga2p – KDNSST – Xa – HA –LQ– AS – STOP (3 frames) – GS – c-myc 

MQLLRCFSIFSVIASVLAQELTTICEQIPSPTLESTPYSLSTTTILANGKAMQGVFEYYKSVTFVSNC

GSHPSTTSKGSPINTQYVFKDNSSTIEGRYPYDVPDYALQAS**ISRGSEQKLISEEDL** 

3.12.2 pBAD-GFP1-10 

Resistance: Ampicillin 

Use: This construct contains parts 1-10 of the whole GFP which when combined with its final 

part will fluoresce. Inducible with arabinose  
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Summary: 

--NdeI - 6xHis—-Spacer--NheI—-GFP(1-10)—-BamHI—spacer- stop 

Sequence: 

AATTCTTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATA

ATGGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTAT

TTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATA

ACATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCG

GCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGAT

CAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGT

TTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTAT

TATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACT

TGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTA

TGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGA

GGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGT

TGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGCAGC

AATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACA

ATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGC

TGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGC

ACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAA

CTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAA

CCCGGGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAG

GATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTC

CACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGC

GTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAA

GAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTC

CTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTC

GCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTG

GACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCAC

ACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAG

AAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGG

AACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCG

GGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTAT

GGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACAT

GTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGAT

ACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGC

GCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCT

CAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGAC

TGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTG

CTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTT

TCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAAG

CGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAAT

GTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCCT

CCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCTC

ACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACT

GGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTA

ATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATA

ATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATT

CATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCG

GTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGA

GCACGATCATGCGCACCCGTGGCCAGGACCCAACGCTGCCCGAGATGCGCCGCGTGCGGCTG
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CTGGAGATGGCGGACGCGATGGATATGTTCTGCCAAGGGTTGGTTTGCGCATTCACAGTTCTC

CGCAAGAATTGATTGGCTCCAATTCTTGGAGTGGTGAATCCGTTAGCGAGGTGCCGCCGGCTT

CCATTCAGGTCGAGGTGGCCCGGCTCCATGCACCGCGACGCAACGCGGGGAGGCAGACAAGG

TATAGGGCGGCGCCTACAATCCATGCCAACCCGTTCCATGTGCTCGCCGAGGCGGCATAAATC

GCCGTGACGATCAGCGGTCCAGTGATCGAAGTTAGGCTGGTAAGAGCCGCGAGCGATCCTTG

AAGCTGTCCCTGATGGTCGTCATCTACCTGCCTGGACAGCATGGCCTGCAACGCGGGCATCCC

GATGCCGCCGGAAGCGAGAAGAATCATAATGGGGAAGGCCATCCAGCCTCGCGTCGCGAACG

CCAGCAAGACGTAGCCCAGCGCGTCGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGA

AACGTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACC

GCAAGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCA

GAGCGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGA

CGATAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATC

GGTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCG

TTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGGCGCCCAACAGTCCCCCGGC

CACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGCCC

GATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGA

TGCCGGCCACGATGCGTCCGGCGTAGAGGATCGCGGCCGCCATAATGTGCCTGTCAAATGGA

CGAAGCAGGGATTCTGCAAACCCTATGCTACTCCCTCGAGCCGTCAATTGTCTGATTCGTTAC

CAATTATGACAACTTGACGGCTACATCATTCACTTTTTCTTCACAACCGGCACGGAACTCGCTC

GGGCTGGCCCCGGTGCATTTTTTAAATACCCGCGAGAAATAGAGTTGATCGTCAAAACCAACA

TTGCGACCGACGGTGGCGATAGGCATCCGGGTGGTGCTCAAAAGCAGCTTCGCCTGGCTGATA

CGTTGGTCCTCGCGCCAGCTTAAGACGCTAATCCCTAACTGCTGGCGGAAAAGATGTGACAGA

CGCGACGGCGACAAGCAAACATGCTGTGCGACGCTGGCTATATCAAAATTGCTGTCTGCCAG

GTGATCGCTGATGTACTGACAAGCCTCGCGTACCCGATTATCCATCGGTGGATGGAGCGACTC

GTTAATCGCTTCCATGCGCCGCAGTAACAATTGCTCAAGCAGATTTATCGCCAGCAGCTCCGA

ATAGCGCCCTTCCCCTTGCCCGGCGTTAATGATTTGCCCAAACAGGTCGCTGAAATGCGGCTG

GTGCGCTTCATCCGGGCGAAAGAACCCCGTATTGGCAAAGATTGACGGCCAGTTAAGCCATTC

ATGCCAGTAGGCGCGCGGACGAAAGTAAACCCACTGGTGATACCATTCGCGAGCCTCCGGAT

GACGACCGTAGTGATGAATCTCTCCTGGCGGGAACAGCAAAATATCACCCGGTCGGCAAACA

AATTCTCGTCCCTGATTTTTCACCACCCCCTGACCGCGAATGGTGAGATTGAGAATATAACCTT

TCATTCCCAGCGGTCGGTCGATAAAAAAATCGAGATAACCGTTGGCCTCAATCGGCGTTAAAC

CCGCCACCAGATGGGCATTAAACGAGTATCCCGGCAGCAGGGGATCATTTTGCGCTTCAGCCA

TACTTTTCATACTCCCGCCATTCAGAGAAGAAACCAATTGTCCATATTGCATCAGACATTGCC

GTCACTGCGTCTTTTACTGGCTCTTCTCGCTAACCAAACCGGTAACCCCGCTTATTAAAAGCAT

TCTGTAACAAAGCGGGACCAAAGCCATGACAAAAACGCGTAACAAAAGTGTCTATAATCACG

GCAGAAAAGTCCACATTGATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATC

CATAAGATTAGCGGATCTTACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATACCCG

TTTTTTTGGGCTAACATCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGAAA

TCTTCTCACCATCACCATCACCATGGTTCTTCTATGGCTAGCATGTCCAAAGGAGAAGAACTG

TTTACCGGTGTTGTGCCAATTTTGGTTGAACTCGATGGTGATGTCAACGGACATAAGTTCTCAG

TGAGAGGCGAAGGAGAAGGTGACGCCACCATTGGAAAATTGACTCTTAAATTCATCTGTACT

ACTGGTAAACTTCCTGTACCATGGCCGACTCTCGTAACAACGCTTACGTACGGAGTTCAGTGC

TTTTCGAGATACCCAGACCATATGAAAAGACATGACTTTTTTAAGTCGGCTATGCCTGAAGGT

TACGTGCAAGAAAGAACAATTTCGTTCAAAGATGATGGAAAATATAAAACTAGAGCAGTTGT

TAAATTTGAAGGAGATACTTTGGTTAACCGCATTGAACTGAAAGGAACAGATTTTAAAGAAG

ATGGTAATATTCTTGGACACAAACTCGAATACAATTTTAATAGTCATAACGTATACATCACTG

CTGATAAGCAAAAGAACGGAATTAAAGCGAATTTCACAGTACGCCATAATGTAGAAGATGGC

AGTGTTCAACTTGCCGACCATTACCAACAAAACACCCCTATTGGAGACGGTCCGGTACTTCTT

CCTGATAATCACTACCTCTCAACACAAACAGTCCTGAGCAAAGATCCAAATGAAAAAGGATC

CCTTGGCTGTTTTGGCGGATGAGAGAAGATTTTCAGCCTGATACAGATTAAATCAGAACGCAG

AAGCGGTCTGATAAAACAGAATTTGCCTGGCGGCAGTAGCGCGGTGGTCCCACCTGACCCCAT

GCCGAACTCAGAAGTGAAACGCCGTAGCGCCGATGGTAGTGTGGGGTCTCCCCATGCGAGAG
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TAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTT

TATCTGTTGTTTGTCGGTGAACT 

Protein: 

MKSSHHHHHHGSSMASMSKGEE 

LFTGVVPILVELDGDVNGHKFSVRGEGEGDATIGKLTLKFICTTGKLPVPWPTLVTTLTY 

GVQCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGKYKTRAVVKFEGDTLVNRIELK 

GTDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFTVRHNVEDGSVQLADHYQQNT 

PIGDGPVLLPDNHYLSTQTVLSKDPNEKGSLGCFGG* 

 

3.12.3 pET-GFP11-Stop 

Resistance: Kanamycin 

Use:  Used to produce POI-GFP11 for the split GFP assay 

Summary: 

.... -- rbs -- TATA -- NdeI -- NheI – Stop (3 frames) -- BamHI – GGGGS – GFP11- Stop -- 

TTAACTAAACGA -- GATC.... 

Sequence: 

TGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCA

GCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTC

GCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTA

GTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCAT

CGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTT

GTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTG

CCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAAC

AAAATATTAACGTTTACAATTTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATT

TGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCTTAGAAAAACTCA

TCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAA

AGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTG

GTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAA

ATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAG

TTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTC

GCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTG

TTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATC

AACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATC

GCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGG

CATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCT

TTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCA

CCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAA

TTTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTAC

TGTTTATGTAAGCAGACAGTTTTATTGTTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCC

ACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCG

TAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAG

AGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCC

TTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCG

CTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGG

ACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACA

CAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGA



125 

AAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGA

ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGG

GTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATG

GAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATG

TTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATA

CCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCG

CCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATATGGTGCACTC

TCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGA

CTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCT

GCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTT

TTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAA

GCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAA

TGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCC

TCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCT

CACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACT

GGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTA

ATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATA

ATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATT

CATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCG

GTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGA

GCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAAC

GTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCA

AGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAG

CGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGA

TAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGT

CGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCT

TTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGG

CGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGAT

TGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCA

GGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGT

CGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTG

CGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCA

TTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTG

AATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAAC

TTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCA

GTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAA

GAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGC

GGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAG

GCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGA

GATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCC

AATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTC

CGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACG

CGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTC

ACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGC

GCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAG

CCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGAT

GGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCA

TGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCA

ACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTC

GATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTA

GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCTAGCTAATAGATAAGTAGGG

GATCCGGTGGAGGTGGATCGCGTGATCACATGGTATTACATGAATACGTGAACGCTGCTGGG
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ATTACATGATTAACTAAACGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGC

TGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGG

TTTTTTGCTGAAAGGAGGAACTATATCCGGAT 

Protein: 

M - AS –**ISR- GS - GGGGS –RDHMVLHEYVNAAGIT* 

3.12.4 pET-β-lactamase 

Resistance: Kanamycin 

Use:  Protein production in bacteria testing ampicillin resistance through the ability of the two 

halves of beta-lactamase combining (bla1 and bla2).  

Summary: 

....-NdeI–-bla1-–(GGGGS)2–-NheI–-stop-–BamHI–-(GGGGS)2–-bla2-–stop–-.... 

 

Sequence: 

TGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCA

GCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTC

GCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTA

GTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCAT

CGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTT

GTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTG

CCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAAC

AAAATATTAACGTTTACAATTTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATT

TGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCTTAGAAAAACTCA

TCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAA

AGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTG

GTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAA

ATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAG

TTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTC

GCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTG

TTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATC

AACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATC

GCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGG

CATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCT

TTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCA

CCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAA

TTTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTAC

TGTTTATGTAAGCAGACAGTTTTATTGTTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCC

ACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCG

TAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAG

AGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCC

TTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCG

CTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGG

ACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACA

CAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGA

AAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGA

ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGG

GTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATG

GAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATG

TTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATA

CCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCG

CCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATATGGTGCACTC

TCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGA
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CTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCT

GCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTT

TTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAA

GCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAA

TGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCC

TCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCT

CACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACT

GGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTA

ATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATA

ATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATT

CATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCG

GTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGA

GCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAAC

GTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCA

AGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAG

CGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGA

TAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGT

CGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCT

TTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGG

CGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGAT

TGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCA

GGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGT

CGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTG

CGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCA

TTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTG

AATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAAC

TTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCA

GTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAA

GAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGC

GGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAG

GCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGA

GATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCC

AATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTC

CGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACG

CGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTC

ACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGC

GCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAG

CCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGAT

GGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCA

TGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCA

ACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTC

GATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTA

GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGATGAGTATTCAACATTTCCGTG

TCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTG

AAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAA

CAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAA

AGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCG

CATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGA

TGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCA

ACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGG

ATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAG

CGTGACACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGGTGG

TGGCGGAAGTGGAGGCGGAGGCAGTGCTAGCTAATAGATAAGTAGGGGATCCGGAGGAGGC

GGAAGTGGAGGAGGAGGTAGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTG

GATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTAT

TGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGA
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TGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACG

AAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAATGATTAACTAAACG

AGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAAT

AACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAA

CTATATCCGGAT 

 

Protein:  

MMSIQHFRVALIPFFAAFCLPVFAHPETLVKVKDAEDQLGARVGYIELDL 

NSGKILESFRPEERFPMMSTFKVLLCGAVLSRVDAGQEQLGRRIHYSQNDLVEYSPVTEK 

HLTDGMTVRELCSAAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNE 

AIPNDERDTTMPAAMATTLRKLLTGGGGGSGGGGSAS**ISRGSGGGGSGGGGSELLTL 

ASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVI 

YTTGSQATMDERNRQIAEIGASLIKHW** 

 

3.12.5 pET-V5-His6 

Resistance: Kanamycin 

Use:  Protein production in bacteria 

  Purification with N-terminal V5 tag and a C-terminal His6 tag 

Summary: 

.... -- rbs -- TATA – NdeI(start) -V5- NheI –STOP-- BamHI -- His6 -- Stop -- TTAACTAAACGA -- 

GATC.... 

Sequence: 

TGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCA

GCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTC

GCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTA

GTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCAT

CGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTT

GTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTG

CCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAAC

AAAATATTAACGTTTACAATTTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATT

TGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAATTAATTCTTAGAAAAACTCA

TCGAGCATCAAATGAAACTGCAATTTATTCATATCAGGATTATCAATACCATATTTTTGAAAA

AGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTG

GTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCTCGTCAAAA

ATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAG

TTTATGCATTTCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTC

GCATCAACCAAACCGTTATTCATTCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTG

TTAAAAGGACAATTACAAACAGGAATCGAATGCAACCGGCGCAGGAACACTGCCAGCGCATC

AACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCTGTTTTCCCGGGGATC

GCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGG

CATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCT

TTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCA

CCTGATTGCCCGACATTATCGCGAGCCCATTTATACCCATATAAATCAGCATCCATGTTGGAA

TTTAATCGCGGCCTAGAGCAAGACGTTTCCCGTTGAATATGGCTCATAACACCCCTTGTATTAC

TGTTTATGTAAGCAGACAGTTTTATTGTTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCC

ACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCG

TAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAG

AGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCC
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TTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCG

CTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGG

ACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACA

CAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGA

AAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGA

ACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGG

GTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATG

GAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATG

TTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATA

CCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCG

CCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATATGGTGCACTC

TCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGA

CTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCT

GCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTT

TTCACCGTCATCACCGAAACGCGCGAGGCAGCTGCGGTAAAGCTCATCAGCGTGGTCGTGAA

GCGATTCACAGATGTCTGCCTGTTCATCCGCGTCCAGCTCGTTGAGTTTCTCCAGAAGCGTTAA

TGTCTGGCTTCTGATAAAGCGGGCCATGTTAAGGGCGGTTTTTTCCTGTTTGGTCACTGATGCC

TCCGTGTAAGGGGGATTTCTGTTCATGGGGGTAATGATACCGATGAAACGAGAGAGGATGCT

CACGATACGGGTTACTGATGATGAACATGCCCGGTTACTGGAACGTTGTGAGGGTAAACAACT

GGCGGTATGGATGCGGCGGGACCAGAGAAAAATCACTCAGGGTCAATGCCAGCGCTTCGTTA

ATACAGATGTAGGTGTTCCACAGGGTAGCCAGCAGCATCCTGCGATGCAGATCCGGAACATA

ATGGTGCAGGGCGCTGACTTCCGCGTTTCCAGACTTTACGAAACACGGAAACCGAAGACCATT

CATGTTGTTGCTCAGGTCGCAGACGTTTTGCAGCAGCAGTCGCTTCACGTTCGCTCGCGTATCG

GTGATTCATTCTGCTAACCAGTAAGGCAACCCCGCCAGCCTAGCCGGGTCCTCAACGACAGGA

GCACGATCATGCGCACCCGTGGGGCCGCCATGCCGGCGATAATGGCCTGCTTCTCGCCGAAAC

GTTTGGTGGCGGGACCAGTGACGAAGGCTTGAGCGAGGGCGTGCAAGATTCCGAATACCGCA

AGCGACAGGCCGATCATCGTCGCGCTCCAGCGAAAGCGGTCCTCGCCGAAAATGACCCAGAG

CGCTGCCGGCACCTGTCCTACGAGTTGCATGATAAAGAAGACAGTCATAAGTGCGGCGACGA

TAGTCATGCCCCGCGCCCACCGGAAGGAGCTGACTGGGTTGAAGGCTCTCAAGGGCATCGGT

CGAGATCCCGGTGCCTAATGAGTGAGCTAACTTACATTAATTGCGTTGCGCTCACTGCCCGCT

TTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGG

CGGTTTGCGTATTGGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAACAGCTGAT

TGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCAAGCGGTCCACGCTGGTTTGCCCCAGCA

GGCGAAAATCCTGTTTGATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTATCGT

CGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCCCGGACTCGGTAATGGCGCGCATTG

CGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGCA

TTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGCTG

AATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAAC

TTAATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCA

GTCGCGTACCGTCTTCATGGGAGAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAA

GAAATAACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCATCCTGGTCATCCAGC

GGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTGTGCACCGCCGCTTTACAG

GCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCGGCGCGA

GATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCC

AATCAGCAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTC

CGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACG

CGGGAAACGGTCTGATAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTGGTTTC

ACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCATGCCATACCGCGAAAGGTTTTGC

GCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATTAGGAAGCAG

CCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGAT

GGCGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCA

TGAGCCCGAAGTGGCGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCA
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ACCGCACCTGTGGCGCCGGTGATGCCGGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTC

GATCCCGCGAAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTA

GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGGGCAAACCGATTCCTAATCCGC

TTTTAGGTTTGGATAGTACGGCTAGCTAATAGATAAGTAGGGGATCCCACCATCACCATCATC

ACTGATTAACTAAACGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCT

GCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTT

TTGCTGAAAGGAGGAACTATATCCGGAT 

Protein: 

MGKPIPNPLLGLDSTAS ** ISR GSHHHHHH 



131 

Chapter 4 - Predicting and Interpreting Protein Developability 

via Transfer of Convolutional Sequence Representation 
This chapter describes the current progress of a study and is unpublished at time of 

defense. Plans for future experimental work are described within the text.  

4.1 Abstract 

Engineered proteins have emerged as novel diagnostics, therapeutics, and catalysts. 

Often, poor protein developability - quantified by expression, solubility, and stability - 

hinders commercialization. The ability to predict protein developability from amino acid 

sequence would reduce the experimental burden when selecting candidates. Recent 

advances in screening technologies enabled a high-throughput (HT) developability dataset 

for 105 of 1020 possible variants of protein scaffold Gp2. In this work, we evaluate the 

ability of neural networks to learn a developability representation from the HT dataset and 

transfer the knowledge to predict recombinant expression beyond the observed sequences. 

Mimicking protein theory, our model convolves learned amino acid properties to predict 

expression levels 42% closer to the experimental variance compared to a non-embedded 

control. Analysis of learned amino acid embeddings highlights the uniqueness of cysteine 

and the importance of hydrophobicity and charge, and unimportance of aromaticity, when 

aiming to improve developability. We identify clusters of similar sequences with increased 

developability through nonlinear dimensionality reduction (UMAP) and explore the 

inferred developability landscape via nested sampling. We identified a phase transition 

region where competing sequence motifs permit increased developability. The work aims 

to advance protein engineering by predicting and interpreting protein scaffold 

developability and advance data science by displaying the power of machine learning and 

sampling techniques to study a highly intricate system.  
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4.2 Introduction  

Engineered proteins have broad utility as therapeutics38, diagnostics161, and 

targeted drug-delivery vehicles5, and as commercial products including industrial 

enzymes162 and agricultural processing163,164. Beyond the primary function (such as 

binding affinity or enzymatic activity), the utility of the protein is also dependent on the 

ability to be manufactured, transported, and stored while maintaining functionality. 

Commonly termed developability48,49, this often-overlooked property - quantified by 

stability, solubility, and production yield - is not typically assessed until late in the 

commercialization pipeline56,117. Late-state developability failures: i) requires substantial 

time for engineering or discovery a new lead, ii) adds avoidable costs which are often 

passed on to the consumer, and iii) prevents the immediate use of proteins that would 

otherwise improve society58.  The ability to predict protein developability and suggest 

beneficial mutations would ease the manufacturing process by reducing the experimental 

effort in selecting lead candidates for further evaluation58,118.  

Predicting protein developability from amino acid sequence is nontrivial due to a 

myriad of factors: i) the combinatorial space resulting from twenty conical amino acids 

possible at each position produces an astronomically large domain,  ii) the domain is 

believed to be rugged where a single mutation has the ability to eliminate functionality13, 

and iii) traditional developability assays often drastically subsample the domain due to 

experimental constraints47. The combination of these factors suggests the creation of a 

sequence-developability model, and the accurate determination the most beneficial 

mutations will require advanced models and sampling techniques. 

Recent advances in protein modeling have suggested that machine learning possess 

the ability to accurately predict functionality61,62,165. However, it remains unclear which 
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embedding, or numeric representation, for proteins results in the most accurate and 

efficiently trained model. The traditional one-hot embedding for categorical variables 

creates a sparse embedding that lacks knowledge of physicochemical similarities between 

amino acids and is likely to result in poor training. Alternative approaches attempt to utilize 

precomputed amino acid properties, such as AAindex166 or structurally-based properties, 

such as non-polar surface area or contact density134, to embed sequences. However, 

determining the correct set of properties to use can lead to an exhaustive search. Another 

popular approach is to utilize an evolutionarily-based model trained from 

homologues60,65,167. However, properties that impact natural proteins (likely including 

primary function, natural mutational rates, and likelihood of experimental sampling) may 

not be the properties useful for identifying developability. As a result, we believe the most 

efficient method of training a sequence-developability model will be using more direct 

experimental developability proxies, collected in high-throughput (HT), that can be 

transferred to predict traditional developability metrics.  

In this study we aim to train and test a sequence-based model to predict the 

developability for variants of the protein scaffold Gp2. While specific variants of this 45-

49 amino acid protein scaffold have been shown to possess novel binding activity26,71, serve 

as a diagnostic in PET imaging168, and inhibit growth of breast cancer cells131, many 

variants still possess poor developability. In a prior study, a series of three HT assays - on-

yeast protease resistance, expression as a fusion with split green fluorescent protein (GFP), 

and modular insertion in split β-lactamase - were validated by mutual information and 

prediction of Gp2 variant yield169. Herein, we will assess the ability to first train a 

sequence-based machine learning model to predict HT assay performance and transfer the 
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developability representation (DevRep) to improve the accuracy in prediction of a 

traditional developability metric. (Figure 1). After building a predictive model, we will 

then i) determine the importance of training data by altering the number of samples and 

HT assays for training, ii) analyze trained model variables to identify factors driving 

developability, and iii) use sampling techniques to explore and portray the developability 

landscape and identify high-yielding variants.  

 

Figure 4.1 - Prediction of protein developability via transfer learning 
Training a sequence-based model to predict developability takes place in two steps. Task 1 (blue, top): The 

large database of protein assay scores will be used to train a mapping (Model A1) from amino acid sequence 

to a developability latent space (DevRep). Task 2 (orange, bottom): By transferring the mapping, yield (a 

traditional metric of developability) can be predicted by training a top model with a smaller dataset. 

 

4.3 Results  

4.3.1 Training Representations via HT Assays 

A protein’s properties are determined by the interaction between amino acids, with 

various chemical properties, in a non-branching sequence. Thus, we constructed models 

that first learn amino acid properties, then combine the properties to create an embedding 

representative of the Gp2 paratope (Figure 2a). We considered three architectures: i) 

Flatten - where all amino acid properties at all positions can interact, ii) Recurrent - where 
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amino acid properties are fed one at a time into a memory-containing unit that is updated 

as a function of the previously seen positions, and iii) Convolutional - where amino acid 

properties are first summarized in a local region of the protein and then combined to obtain 

a full protein embedding.  
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Figure 4.2 - Protein embedding strategies based on interacting amino acid properties 

predict HT developability assay scores 
a) The Gp2 paratope residues are embedded via trained properties and are combined via three different 

strategies into a developability representation, identified via a red outline. b) Embedded and non-embedded 

(one-hot) architectures were trained to predict assay scores via cross-validation (CV) and evaluated on an 

independent test set of sequences. c) The convolutional architecture’s predictions are compared to the true 
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assay scores as a kernel density plot. The number of unique Gp2 variants and the Spearman’s rank correlation 

are displayed.  

Multitask learning was applied to use all three HT assays to train a single 

developability embedding. Previous analysis revealed that the HT assays are nonlinearly 

related to each other. Accordingly, we allowed dense layers between the protein embedding 

and assay scores (exact number determined via hyperparameter optimization during cross-

validation) after the concatenation of a one-hot encoded assay identifying vector.   

The predictive performance of HT assay score prediction was compared to a series 

of controls as assessed by the mean squared error of the cross-validation set and an 

independent test set (Figure 2b). All three architectures (Flatten: 0.014/0.017, Recurrent: 

0.018/0.023, Convolutional: 0.014/0.017 {CV/Test}) using sequence information were 

more accurate than the assay only-no sequence information-model (0.030/0.041). 

Interestingly, the protein-inspired architectures were also able to predict assay scores with 

lower error than the experimental variance (0.025/0.023), highlighting the previously noted 

low resolution of a single trial of the assays. We also compared the results to a traditional 

embedding with a flattened one-hot encoding of the amino acids of the Gp2 paratope. 

While a linear (ridge regression) model obtained moderate performance (0.025/0.033), a 

nonlinear model (flattened sequence with dense layers between sequence and assay score) 

was able to achieve equal performance with the linearly-embedded amino acid models 

(0.016/0.019). We then visualized the relative correlation of the convolutional model’s 

predicted versus actual assay score (Figure 2c). We found that the model was not equally 

predictive across assays, with the most accurate performance for the on-yeast protease 

assay. 
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4.3.2 Testing Transferability to Traditional Developability Metric 

Having trained a series of protein embeddings trained on and capable of predicting 

HT developability assay performance, we next asked if the same embedding could be 

transferred to predict a traditional metric of developability. Keeping the embedding steps 

constant (Figure 1, Model A1), we then fit a separate top-model (Figure 1, Model B) to 

predict the Gp2 yield in two E. coli strains via multitask learning using a one-hot encoded 

strain identifying vector. We used attempted both linear (ridge regression) and nonlinear 

models (support vector machine and random forest) to account for possible complex 

interactions between the embeddings and yield.  

We found that transferring embeddings trained via assay scores resulted in the 

prediction of yield more accurately than a traditional one hot embedding. During cross 

validation, the recurrent embedding with a random forest top model (CV MSE: 0.46) and 

the convolutional model with an SVM top model (CV MSE: 0.47, Figure 3a) exhibited 

optimal performance. Upon evaluation of an independent test set (Figure 3b), the 

convolutional embedding with an SVM top model produced the most generalizable model 

(Test MSE: 0.53, Figure 3c) while the recurrent embedding suffered from overfitting (Test 

MSE: 0.68). Compared to the one hot model with a forest top model (CV MSE: 0.60, Test 

MSE: 0.67), the convolutional embedding reduced the gap to experimental variance (0.36) 

by 45%. Additionally, the convolutional embedding was also able to outperform a model 

trained on experimentally measured assay scores (CV MSE: 0.50, Test MSE: 0.56) 

suggesting the embedding can avoid errors that occur from the non-perfect representation 

of the proxy HT assays to yield.  
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Figure 4.3 - Transferred convolutional embedding predicts yield more accurately than 

traditional embedding strategy 
a) Cross validation and b) Test performances of predicting yield comparing a traditional one hot embedding 

to protein inspired embeddings trained by HT assay scores. c) The convolutional embedding with a support 

vector machine top model’s prediction of yields versus experimentally measured yield.  

 

4.3.3 Alternative Model Building Approaches 

We next asked if the assay score predictions could be used to predict yield rather 

than using an intermediate hidden state (Figure 4a). Despite the accuracy of assay score 

predictions during training (see Figure 2B), none of the architectures’ assay score 
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predictions were accurate enough when fed into a previously trained assay score to yield 

model (Figure 4b). Upon inspection of the predictions, while the on-yeast protease assay 

scores were predicted well (ρ = 0.84), the inaccuracy of the split GFP (ρ = 0.41) and split 

β-lactamase assay (ρ = 0.02) produced incorrect assay scores (Figure 4c). The incorrect 

scores, compounded with a non-perfect assay score to yield model, likely resulted in the 

poor performance in predicting yield.  

 

Figure 4.4 - Predicted assay scores not accurate enough for yield predictions 
a) In this approach, two models are trained in parallel to predict yield from amino acid sequence. The 

predicted assay scores are used to predict yield, compared to an intermediate hidden state during transfer 

learning. b) Accuracy in yield measurements is compared to the transfer learning approach using the 

convolutional embedding and a model using experimentally measured assay scores. c) Comparison of 

predicted versus actual assay scores (left) and yield predicted from assay scores (right) for the convolutional 

embedding model. 
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We next asked if we could have fit a sequence-based model on the yields predicted 

by experimentally measured assay scores (Figure 5a). The set of 45,433 assay scores were 

converted to predicted yield in both bacterial strains and then used to train models with the 

same architectures used when predicting assay scores (Figure 5b). All architectures 

displayed a strong ability to learn the predicted yields with cross validation losses ranging 

from 0.093 (convolutional) to 0.107 (one hot non-linear). However, upon evaluation of the 

independent test set of sequences all models displayed high levels of overfitting with test 

losses ranging from 0.615 (convolutional) to 0.664 (one hot linear). Further visualization 

confirms the ability of the convolutional architecture to match the assay-score predicted 

yields, but the inaccuracies of the assay-score predicted yields to true yields caused 

overfitting (Figure 5c).  
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Figure 4.5 - Models trained on yields predicted from experimentally measured assay 

scores display overfitting 
a) In this strategy, Model A is first trained to predict yield measurements from HT assay measurements. Then 

model A is used to predict the yield to build a database of assay predicted yield measurements. Model B is 

then trained to predict yield from the large database of assay predicted yield measurements from amino acid 

sequence. Once trained, the model B can then predict yield from sequence. b) A series of models were trained 

on set of 45,433 sequences’ predicted yields from experimentally measured assay scores. The generalizability 

was then determined by the prediction of an independent test set of 97 sequences. b) The convolutional 

architecture could learn the assay score predicted yields but failed to generalize to experimentally measured 

yields. 

 

The two alternative approaches for yield prediction differed from the transfer 

learning approach by directly building on the assay score to yield model. While the assays 

were related to yield, the inaccuracies of the model generated a bias that could not be 

corrected. The transfer learning model was able to overcome this by generating a 
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representation of proteins useful for developability metrics but training an assay-score 

independent top model. We believe that the differences in the approaches are largely 

dependent on the relationship between the assay scores and yield, where an accurate assay-

score to yield model would likely produce similar results across strategies. 

4.3.4 Dependence on sample size  

We next desired to understand the relationship between the size of the training 

datasets and the accuracy of the model. To this end, we randomly subsampled unique 

sequences from the HT assay dataset to develop convolutional embeddings and compare 

performance to the one hot encoded architecture (Figure 6a). We found that the 

convolutional embedding always outperformed the one hot embedding at each sample size. 

However, the gap between the two models decreased with increasing training data, 

suggesting that with enough data, a simpler model can learn the same information of a 

more complex architecture. Conversely, at lower sample size, a more complex architecture 

was capable of learning information useful for protein developability predictions.  
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Figure 4.6 - Transfer model benefits from increase of sample size in both training steps 
a) The convolutional embedding was trained on random subsets of the HT assay data. While performance 

improved with sample size, the relative performance over traditional embedding decreased. b) The 

convolutional embeddings from (a) were used to predict yield with top models trained via random subsets of 

available data. c) The predicted number of yield measurements to obtain a model with error matching 

experimental variance was extrapolated via log-log line of best fit weighted by inverse of the confidence at 

each sample size. Error bars are propagated from the standard error of slope and intercept. 

 

The convolutional embeddings using 1%, 10%, and 100% of the HT assay data 

were transferred to the task of predicting yield (Figure 6b). Top models were then trained 

using 5%, 10%, 20%, 30%, 50%, and 100% of the yield training data. At all fractions of 

yield data, performance was improved with embeddings trained on more data suggesting 
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the larger HT assay dataset learned a more universal description. Finally, we assessed the 

efficiency of the embedding by estimating how many unique sequences it would require to 

achieve predictive accuracy within the experimental variance of yield measurements 

(Figure 6c). We found that the convolutional embedding trained by the full amount of HT 

assay data learns 90 ± 40 % more efficiently than the one hot embedding only requiring 

(0.6 ± 1.7)104 unique sequences compared to the (4 ± 5)104 sequences required for the 

one hot model. Interestingly, the embeddings trained by subsets of the HT assay data were 

less efficient than the one hot model, and all embeddings were less efficient than the model 

trained directly on assay scores which required only (0.5 ± 0.9)104 sequences to achieve 

the same result.  

4.3.5 Dependence on HT Assays 

Having observed the success of transfer learning utilizing all three HT assays, we 

desired to i) understand the importance of each individual assay in creating a transferable 

embedding and ii) understand if the transfer learning approach can always create a more 

accurate embedding than the direct use of HT assay scores. Each combination of HT assays 

was used to fit the three embedding architectures utilized in this study (flatten, recurrent 

and convolutional). The three top model architectures (ridge, random forest, SVM) was 

trained on each HT assay combinations’ embedding, where the results of the optimal top 

model for predicting yield was selected for comparison (Figure 7a). The combination of all 

three HT assays created the optimal model. Combinations utilizing the on-yeast protease 

assay resulted in losses lower than those without (p < 0.01, independent 2-way Student’s 

t-test). In fact, the assay alone only increases error 2% from the model utilizing all three 
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HT assays. This suggests the on-yeast protease assay is the most informative assay and 

could potentially be used independently in future studies.  

 

Figure 4.7 - On-yeast protease assay is most informative and transfer learning enables 

discovery of true signal from inaccurate HT assay proxies 

a) A developability representation and top model to yield was trained with combinations of HT assays. The 

prediction error of sequence yield is grouped by assay combination and colored by embedding architecture. 

Error bars represent standard deviation of loss from N = 10 stochastically trained embeddings and top models. 

b) Yield predictions from assay scores and the most accurate trained embeddings for each combination of 

HT assays suggests transfer learning more accurate than direct representation of the assay output.   

 

The ability of the transfer learning training strategy to identify developability trends 

and average out noisy signals from similar sequences enable predictions more accurate 

than direct use of HT assay outputs. Having seen the ability of the transfer model 

outperform prediction from experimentally measured assay scores (see Figure 3b), we 

desired to understand if transfer learning was successful because of the use of multiple 

assays and/or a large training database to learn a more generalizable representation. To 

answer this question, we plotted the model accuracy trained directly on experimentally 
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measured assay scores to the model accuracy that utilized the assay scores to train a 

representation that was transferred to predict yield (Figure 7b). We observed a correlation 

(Spearman’s ρ = 0.96) between the losses, suggesting that the more relevant assay score 

combinations enable more accurate embeddings. We also observed a significant decrease 

of loss from transfer learning models to models trained directly on assay scores (paired t-

test p < 0.01). The ability of transfer learning to always outperform assay score models, 

even when a single assay is used, suggests the model can utilize sequence information to 

denoise errors present in the assay output.  

4.3.6 Model Interpretability 

Having trained an accurate model (transfer learning utilizing a convolutional 

embedding with all three HT assays and an SVM top model to yield, now referred to as 

DevRep) for the Gp2 developability as characterized by soluble yield in E. coli, we desired 

to explore model parameters and visualize the landscape.  

4.3.6.1 AA Embedding 

First, we analyzed the trained amino acid embeddings to determine what properties 

were most relevant to Gp2 developability (Figure 8a). The 17 trained properties were 

distilled down to three principal components (PC) which explained 68% of the total 

variance. Upon inspection, we determined that cysteine was uniquely separated in PC 1 

and 2. Additionally, PC 2 appeared to separate the remaining residues by hydrophobicity 

by placing aromatic and aliphatic residues separated from polar and charged residues. PC 

3 further separated hydrophilic residues into negative, neutral, and positively charged. 

Interestingly, histidine (which possesses a pKa near experimental conditions) is located 

closer to neutral amino acids compared to arginine (R) and lysine (K), commenting on the 
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ability of the model to learn about both charged states.  We then compared each PC to the 

AAindex166 list of properties in an attempt to find the most correlative physicochemical 

property: PC 1- coefficient over single-domain globular proteins (ρ = 0.91), a measurement 

of hydrophobicity170 again underscoring its importance on developability.; PC 2- 

normalized frequency of N-terminal non-beta region (ρ = 0.86), a measurement of residue 

frequency in nonstructured regions171; and PC3- helix termination parameter at position j-

2,j-1,j (ρ = 0.83), a measurement of residue frequency in short helical structures172. 

Together, PC 2 and 3 suggest the paratopes may be balancing between a flexible loop and 

a short helical confirmation to provide stability.  
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Figure 4.8 - Analysis of trained embeddings reveals properties related to developability 
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a) Principal component (PC) analysis of the 17 amino acid embedding table colored by category of residue. 

EV = explained variance. b) Inter- and intra- residue category distances highlighting the uniqueness of 

cysteine and lack of difference between aromatic and aliphatic residues. c) Clusters of sequences were 

identified via UMAP and hdbscan of the 45,000 sequences used for training. d) Developability, as predicted 

by yield, varies between clusters trained by on HT assay scores. e) Three-dimensional landscape visualized 

by cylinders centered at the sequence-mean UMAP location with height representing the interquartile range 

of developability and radius corresponding to the number of sequences. Low-developability clusters are in 

the front right portion of the landscape. f) Amino-acid distribution of two low-developability clusters (orange 

and yellow) and two high-developability clusters (purple and pink). 

 

We further evaluated the average inter- and intra-residue PC distances (Figure 8b). 

Each identified cluster of residues had a lower intra-residue distance than inter-residue 

distance except for aromatic (F, W, Y) and hydrophobic aliphatic (A, I, L, M, V) residues 

suggesting the hydrophobic nature of these residues outweighed the relative size difference 

and additional interaction capabilities of aromatic rings.  

4.3.6.2 Location of Training Sequences in DevRep 

We next assessed the interaction of the residue embeddings by converting the 97-

dimensionial embedding of the 45,000 training sequences via UMAP173. We then utilized 

hdbscan174 which identified 19 clusters of sequences from the 2-dimensional UMAP space 

(Figure 8c). We then discovered that the clusters contained information about the variant 

developability by finding a significant difference in developability distributions as a 

function of cluster (Figure 8d, Kruskal-Wallis H-test, p < 0.05). Interestingly, the location 

of the 4 lowest clusters were also located close together in UMAP space (Figure 8e). As 

UMAP can cluster sequences locally and globally, this suggests DevRep places most low-

developability sequences in a similar location within the embedding.  

Finally, we analyzed the intra-cluster amino acid distribution for select clusters 

(Figure 8f):  Orange - a low developability cluster not containing any cysteines, an increase 

in glycine, and loops of length 7; Yellow - a low developability cluster with cysteines at 
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sites 7 & 12 with fewer glycines; Purple - a high developability cluster with cysteines at 

sites 7 & 12 and proline in the first loop; and Pink - a high developability cluster with 

cysteines at sites 7 & 12 and also in the second loop. The differences in amino acid 

frequencies of the selected clusters, paired with the amino acid embedding analysis, 

suggest the model learned residues interaction, particularly with cysteines. 

4.3.7 Comparison to Alternative Protein Embeddings 

We next compared the HT assay trained embeddings to other state of the art protein 

embeddings. The AAindex166 was used to create an embedding based upon physiochemical 

properties. As the index is known to contain several similar entries, PC analysis was used 

to isolate down 3 and 10 residue properties for which the paratope sequence was 

transformed and flattened. We also compared DevRep to three embeddings trained on 

evolutionary properties: TAPE167’s transformer embedding which was trained on the 

Pfam175 database via predicting masked residues, UniRep60 which was trained on the 

UniRef176 database via predicting the next residue in a recurrent-style architecture, and 

evolutionarily (evo) tuned UniRep via isolating homologous sequences to Gp2 via 

HMMER177 and updating via Jax-UniRep178 software. All evolutionary embeddings were 

tested by averaging over either the full sequence or the paratope sequence.  

Each embedding was trained to predict yield utilizing the same architectures and 

hyperparameter search strategy as DevRep (Figure 9a). We found that DevRep was able to 

predict yield more accurately than every other embedding. The evolutionary based 

embeddings (particularly UniRep paratope) were able to predict yield more accurately than 

the strain only and one hot controls, suggesting that developability contains similar 

information as contained in the embedding, but not as much information as the HT assays. 
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The poor performance of AAindex suggests traditional physicochemical properties are not 

the best way to describe Gp2 variants regarding developability.  

 

Figure 4.9 - HT assay trained embedding contains more developability information 

than alternative embeddings 
a) Comparison of protein embeddings’ ability to predict yield as represented by the loss of an independent 

set of sequences. b) Variants were plotted using UMAP for each embedding. (top) Color represents 

experimentally measured developability. (bottom) Sequences were clustered by UMAP coordinates. Color 

represents unique clusters. c) A low yield variance across sequences in clusters determined by embedding 

suggests shared information. d) The correlation between the embedding’s developability information and the 

model’s (trained using the same embedding) predictive performance confirms success of model training.    
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To ensure the superior performance of DevRep in predicting yield was not due to 

poor model development, we assessed the relationship between position of sequences in 

each embedding to the measured developability. The 195 unique sequences with 

experimentally measured yield were embedded and transformed for visualization via  and 

UMAP (Figure 9b). Clustering via location was then performed and the average intra-

cluster variance of yield was calculated to estimate how much information about 

developability was stored in the embedding (Figure 9c). We found that the HT assay scores 

and DevRep’s UMAP representation contained the most information about yield (Figure 

9d). The most yield-information containing embedding is expected to enable the most 

accurate predictions if the model can interpret the information. We found a correlation 

between the embedding’s intra-cluster yield variance and predictive performance of trained 

models, suggesting the models were fully trained and the limitation was the information 

contained in the embedding.  

4.3.8 Phase Space Analysis via Nested Sampling 

Rather than rely on the skewed experimentally observed distribution of 

developability, we sought to use nested sampling to systematically characterize the 

structure of the fitness landscape while identifying highly developable sequences. At every 

iteration, nested sampling reduces the fraction of available sequence space “volume” by a 

constant amount. As a result, we can use the output of nested sampling (a list of threshold 

sequences and their associated yield) to compute the density of states (DOS) as a function 

of developability. Put simply, we can estimate the relative number of sequences available 

at any given developability. Computation of the DOS also allows us to determine analogs 

of thermodynamic properties such as entropy, mean developability and heat capacity (i.e., 
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susceptibility with respect to a temperature-like quantity that in this context modulates the 

ability to mutate) to identify the occurrence of phase transitions179,180. We ran the algorithm 

with 100 live sequences, removing the lowest yield sequence and 0.99% of the phase 

volume at every loop until convergence to a single sequence (Figure 10a). We then utilized 

the DOS to identify two phase transitions, between which the sequences split into multiple 

subpopulations that compete at a critical temperature. Signaled by peaks in the heat 

capacity, the expected values of developability corresponding to the critical temperatures 

have a developability of ~1.25 and 2.0 (Figure 10b). This phase transition occurs with only 

10-5 - 10-10 of all sequencies predicted to have a higher yield.  
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Figure 4.10 - Nested sampling explores the developability-sequence landscape 
a) Nested sampling was performed using 100 active sequences while accepting mutations with corresponding 

yields above the threshold per round. The threshold sequence, and corresponding yield, was determined by 

the lowest yield of the live sequences. b) The density of state for each level of developability was determined 

and used to estimate the expected developability, heat capacity, and entropy at various temperatures 

corresponding to the ability to mutate. Phase transitions are identified with a dashed line. c,d) The UMAP 

representation displays the landscape splitting into distinct clusters of DevRep space above the transition. e) 

The disconnectivity plot displays a sudden contraction with a rugged landscape at the phase transition. 
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The output of nested sampling can also be used to visualize the phase space by 

plotting the relationships between sampled variants181,182. Plotting the sequences in UMAP 

space shows a single stalk of low developability sequences up to the phase transition where 

several high developability clusters exist (Figure 10c,d). The split suggests that beyond the 

phase transition, there exists several distinct modes of achieving high developability. A 

disconnectivity plot was synthesized by creating a graph of nearest sequences of higher 

yield based upon the UMAP transformation of the DevRep embedding (Figure 10e). The 

phase transition at developability corresponds to a sharp decrease in configuration space 

with disconnected subgraphs of sequences.  

We compared disconnectivity plots and UMAP landscape to the one hot and 

UniRep Paratope models’ embeddings (Figure 11). Every model suggests a steep 

contraction of configuration space. The DevRep landscape is the only embedding to show 

a large split of sequence space. The one hot UMAP landscape appears to have sequences 

of various predicted developability located at every UMAP location, confirming the one 

hot embedding lacks easily interpretable developability information. The UniRep paratope 

landscape does show correlation between UMAP 1 and developability, suggesting there is 

some shared information.  
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Figure 4.11 - Comparison of developability information contained in embedding 
Nested sampling was performed with each model. (left) UMAP representations of sequences sampled during 

sampling have varying relationships with predicted developability. (right) Disconnectivity plots from 

different models agree with a sudden constraint in configuration space of the top 10% of sequences but 

disagree in the ability to identify a large split of sequence space. 

 

4.3.9 Identification of Top Developability Variants 

As a final test of the transfer model approach to predict protein developability, we 

desired to measure the ability to predict high developability variants. Because we found 
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that the Gp2 library splits into many subgroups of sequences that can achieve high 

developability, we also focused on generating diverse sequences. We also identified 

sequences using simulated annealing183 to compare search strategies. The embeddings 

from each sampling approach were reduced via UMAP and clustered via hdbscan to 

identify sequences from clusters diverse in DevRep space. We chose 100 variants equally 

sampled across the top of each identified cluster (Figure 12a). The same process was 

repeated with the one hot model and UniRep and Paratope models and embeddings. A 

randomly generated set of sequences was also tested for comparison. The predicted yields 

and different location within each embedding for the isolated sequences suggests each 

model has its own maximum (Figure 12b).  
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Figure 4.12 - Assessment of models to predict high developability variants 
a) Sequences identified through each sampling strategy were clustered via embedding. The top sequences 

within each cluster were ordered to obtain a diverse set of sequences for experimentation. b) Sequences 

ordered from each model were not predicted to be optimal in other models and were unique. c) The accuracy 

of each model to predict novel sequences will be evaluated as a final test of predictability. d) The distribution 



160 

of experimentally measured developability will be compared across model and sampling strategy to 

determine the best approach to identify high developability sequences. 

 

It was observed that including sequence diversity in the selection scheme 

introduced lower developability variants. Additionally, large clusters of high 

developability sequences were observed in both DevRep and UniRep embeddings during 

nested sampling (Figure 4.13). Thus, for each model, the large cluster was split into 

subclusters where 100 additional variants were ordered equally spread across the high-

developability subclusters.  

 

Figure 4.13- Selection of additional high developability variants 
Large clusters of highly developable variants were observed while clustering all recorded sequences during 

nested sampling. Thus, the clusters (left panel, DevRep - Purple, UniRep - Green) were broken into 

subclusters (middle panel) using the same methodology. The top sequences within each subcluster were 

selected for additional screening. 
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4.3.10 Work in Progress 

Variants will be produced in a similar method to the training data. To assess the 

accuracy of the models, we will again compare the error in the prediction of newly 

produced sequences (Figure 12c). Should DevRep not be the most accurate in prediction, 

a suggestion for improvement would be training additional model architectures or 

attempting to improve the UniRep embedding by tuning parameters with HT assay scores. 

We will also access each model and sampling strategies’ ability to identify unique and 

highly developable sequences by comparing the distribution of yields (Figure 12d). While 

nested sampling enables phase space visualization, simulated annealing theoretically 

allows for more exploration. The model that identifies the highest yielding sequences is 

hypothesized to best represent the landscape in terms of the ability to explore and find the 

maximum.  

4.3.11 Preliminary Results 

The following section contains data resulting from a single trial of yield 

measurements. We assayed 280 variants in the Iq strain and 269 variants in the SH strain. 

Using both metrics, the DevRep model was the most accurate in prediction of unseen 

sequences (Figure 4.14a, MSE: 0.71, ρ Iq: 0.13, ρ SH: 0.21). Interestingly, the One Hot 

encoded model (MSE: 0.93, ρ Iq: 0.03, ρ SH: 0.25) outperformed the UniRep encoded 

model (MSE: 1.23, ρ Iq: 0.04, ρ SH: 0.15). All models displayed increased predictive 

performance over the Strain Only control model (MSE: 1.40).   
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Figure 4.14 - Preliminary results display the abilities of sequence embeddings 
a) The predicted versus actual developability of 280 Iq  and 269 SH variants identified via sampling strategies 

(see Figures 4.12 and 4.13). b) Sequences generated by each embedding and sampling strategy are compared 

to each other and to a selection of randomly generated sequences. c) An additional set of sequences identified 

via nested sampling of DevRep and UniRep were also compared. These sequences were designed to be more 

developable and more similar in embedding space. d) Each sequence in (c) was compared to the set of 

sequences with measured yield that was used during model training. The distribution shown is broken down 

by the model used to generate the sequences.  

We next assessed which model and sampling technique identified the top 

performing variants with additional focus on diversity (Figure 4.14b). While nested 
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sampling outperformed simulated annealing for DevRep by identify higher yielding 

sequences (t-test, p < 0.05 for both strains), this trend was not true across all models and 

strains. All models and sampling strategies were able to produce a sample of sequences 

with a higher median developability than when samples were chosen randomly. However, 

when comparing the embedding strategies to each other, there is no clear winner in terms 

of producing the highest yield variants.  

We then assessed the distribution of yields obtained with a higher focus on 

developability than diversity (see Figure 4.13). Again, both DevRep and UniRep 

embeddings were able to select sequences with higher developability than a random 

selection (Figure 4.14b). Additionally, DevRep was able to identify the sequence with the 

highest developability in Iq (Loop 1: CWCPXRPC, Loop 2: NRGAXGGG) and had the 

highest minimum yielding sequence in SH. Of final note, we found the sequences identified 

in this final evaluation were significantly far (in terms of Hamming distance) from variants 

evaluated during model training. Although DevRep’s sequences were closer than UniRep 

and randomly identified, they were still 9.5 (on average) amino acid mutations away from 

the closest sequence during training.  

These preliminary results display a promising utility of DevRep in terms of both 

predictive accuracy and the ability to identify highly developable variants. Additionally, 

the performance of both One Hot and UniRep embedding and sampling strategies suggest 

these techniques could be a useful first step in sequence identification, even prior to 

experimentation.  
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4.4 Conclusion 

This work evaluated the ability of HT developability assays to train an embedding 

that is transferable to a traditional metric. We determined that this strategy can smooth out 

erroneous information found in the proxy assays and train more efficiently than a one-hot 

control embedding. We then analyzed the model’s parameters and predictions to identify 

unique modes of achieving high developability based upon the location of cysteine and the 

importance of hydrophobicity and charge. The configuration space was explored via nested 

sampling which identified a range of developability where the sequences are highly 

clustered and unique, suggesting a series of sub-libraries may outperform a single design. 

At present, the transfer learning approach outperforms models based on physiochemical or 

evolutionary properties confirming developability is a complex and unique property. 

Further assessment on the ability to accurately identify high developability sequences will 

further validate the utility of this approach. 
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Chapter 5 - Concluding Remarks and Future Work 
The ability to predict protein function is one of the most studied and unsolved 

problems in biology. Benefits of an accurate and interpretable model include improving 

pharmaceutical treatments, laboratory reagents, and enzymes found in a variety of 

consumer and industrial applications. Engineering these properties is complicated by the 

immensely large domain of protein space and the complexity and barrenness of sequence-

function relationships. The presented work focused on protein evolvability (ability to easily 

modify functionality) and developability (ability to manufacture while maintaining 

function). These abstract functions are believed to comprise a multitude of factors 

impacting performance. Improvements would improve the efficiency of commercialization 

across vast protein applications. This work evaluated a data-driven engineering approach 

by experimentally obtaining an information-rich and deep dataset for each function and 

testing various machine learning approaches for the ability to provide accurate insight.  

5.1 Aim 1: Interpreting and Predicting Protein Evolvability 

Parameterizing proteins using biophysical properties is problematic as there are 

practically unlimited number of ways to describe a protein. Even utilizing previously 

optimized high-throughput evolvability techniques, only seventeen different proteins could 

be evaluated. The disparity between metrics and samples was addressed by employing 

dimension reducing techniques that isolated a smaller number of independent signals in the 

data, lowering the number of trainable parameters. Additionally, a model with a focus on 

generalizability was created through cross-validated evaluation. The importance of each 

biophysical metric in the final model was evaluated and determined that a large, spatially 

separated paratope is ideal for protein scaffold evolvability.  
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There exist other scenarios which there are far more potential input values than 

datapoints. The machine learning techniques employed in this paper can be used to ensure 

the generation of a generalizable and interpretable model. Future studies should always 

attempt the simplest (linear) models first. The benefit of interpretability generally far 

outweighs a potentially slight improvement in performance, especially with only 10’s of 

datapoints.  

It was found that when testing for evolvability, developability is not guaranteed. 

Future evaluation of predicted evolvable scaffolds was halted when the most evolvable 

scaffold from the study exhibited poor developability, limiting characterization 

capabilities. A threshold in developability to possess evolvability was observed, as was a 

decrease in stability with functionality. Taken together, it seems advantageous that 

scaffolds should be developable. At present, the relative importance of the biophysical 

properties versus developability remains unknown.  

The completion of this aim, signified by identifying beneficial properties of 

evolvable protein scaffolds, supports the hypothesis that a data driven approach can provide 

accurate insight to protein engineering problems. Future experimentation is likely to 

increase in scale with increasing molecular technologies with decreasing costs which will 

aid in resolution of driving properties. Future work may also benefit by editing the metric 

of evolvability, as the balance between the level of function of the proteins (e.g. binding 

affinity) and the unique number of functioning proteins remains heuristic. We hypothesize 

that the next substantial advance in predicting evolvability will result from identifying 

biophysical properties of high developability scaffolds. Thus, we advocate that the 

community expand on the database of evolvability in terms of number of scaffolds and the 
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number of targeted proteins for which novel specific binding is the function of interest. 

These scaffolds should be diverse in terms of biophysical properties and developability - 

although upsampling highly developable libraries would be of interest. A more generalized 

understanding of evolvability can aid in the selection - or de novo creation - of protein 

scaffolds that can readily produce variants with high affinity towards the target of interest.  

5.2 Aim 2: Interpreting and Predicting Protein Developability 

Without explicitly implementing geometric or evolutionary background 

information, we attempted to train a model where only the amino acid sequence is used to 

predict developability via data-driven learning of relevant properties. The data suggests 

that it would take 104 - 105 variant measurements (for a library of 1020 variants) to train an 

accurate model for a traditional metric of developability, well beyond traditional capacities. 

Rather, we gathered developability data by establishing three high-throughput 

developability assays while simultaneously reducing a major bottleneck in the candidate 

selection process. Future work should focus on the validity of these assays with a variety 

of proteins as well as their predictive performance towards other traditional developability 

metrics.  

The ability to transfer the information of developability from the high-throughput 

assays to predict the traditional metric of interest was nontrivial due to biologic noise and 

the limitations in high-throughput assays’ relevance. We showed that an intermediate 

representation in a deep-learning model can remove inaccurate signals by predicting with 

50% more accuracy than traditional modeling approaches. Finally, we examined 

parameters of the model to identify various sequence motifs with high developability, 
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including those utilizing the stability of disulfide bond by including the amino acid 

cysteine.  

We also showed that developability models trained on more relevant functions can 

outperform models trained on evolutionary or physiochemical information. This further 

underscores the importance on the relevance of the dataset. It is popularized that deep-

learning networks require sufficient depth of data. However, I argue that the quality of 

information stored in the data is much more important. Future work on validating assays 

or utilizing the numeric representation of the sequence for a prediction of a new task must 

consider the relevance of their task to the developability assessed on the high-throughput 

developability assays.  

 Completion of this aim, signified by the creation of an accurate deep-learning 

model which provides insights into the motifs driving developability, again support the 

hypothesis of data-driven protein engineering. Future laboratory experimentation should 

be aimed towards identifying nonredundant high-throughput measurements of 

developability while computational experiments should aim to discover the most datapoint 

efficient model architectures. A final limitation of deep-learning for protein engineering is 

the language-barrier between topics. However, as more and more studies begin combining 

the fields, this obstacle is likely to vanish. Nevertheless, it is vital that scientists of all 

backgrounds focus on the clarity of communications to accelerate collaborative and 

synergistic research.  

5.3 Final Statements 

There are several methods to engineer proteins. We have shown that data-driven 

engineering is a successful technique when modifying abstract functionality such as 
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evolvability and developability. At present, the largest limitation to the success of data 

driven protein engineering remains the ability to obtain a large information-rich dataset 

and extract interpretable information from the model. However, the techniques presented 

in this document were able to improve performance and provide insightful feedback with 

the amount of data collected in a university laboratory within five years.  

Continued validation and implementation of the methodology presented here could 

revolutionize the protein commercialization pipeline. With an understanding of protein 

scaffold evolvability, novel scaffolds can be selected to increase the hit rate of finding a 

functional molecule. With an understanding of protein scaffold developability, functional 

variants can be computationally sorted to reduce experimental efforts. There even exists 

the potential to switch the order of operations by first creating a library of high 

developability candidates which can subsequently be sorted for a variety of functions 

without need for further developability assessment. Future work in determining the 

relationship between evolvability and developability should address such possibilities.  
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