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Stefano Martiniani

When the states of a system can be described by the extrema of a high-dimensional function,
the characterisation of its complexity, i.e. the enumeration of the accessible stable states, can
be reduced to a sampling problem. In this thesis a robust numerical protocol is established,
capable of producing numerical estimates of the total number of stable states for a broad
class of systems, and of computing the a-priori probability of observing any given state. The
approach is demonstrated within the context of the computation of the configurational entropy
of two and three-dimensional jammed packings. By means of numerical simulation we show
the extensivity of the granular entropy as proposed by S.F. Edwards for three-dimensional
jammed soft-sphere packings and produce a direct test of the Edwards conjecture for the
equivalent two dimensional systems. We find that Edwards’ hypothesis of equiprobability
of all jammed states holds only at the (un)jamming density, that is precisely the point of
practical significance for many granular systems. Furthermore, two new recipes for the
computation of high-dimensional volumes are presented, that improve on the established
approach by either providing more statistically robust estimates of the volume or by exploiting
the trajectories of the paths of steepest descent. Both methods also produce as a natural
by-product unprecedented details on the structures of high-dimensional basins of attraction.
Finally, we present a novel Monte Carlo algorithm to tackle problems with fluctuating weight
functions. The method is shown to improve accuracy in the computation of the ‘volume’
of high dimensional ‘fluctuating’ basins of attraction and to be able to identify transition
states along known reaction coordinates. We argue that the approach can be extended to
the optimization of the experimental conditions for observing certain phenomena, for which
individual measurements are stochastic and provide little guidance.
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“The great tragedy of Science – the slaying of a
beautiful hypothesis by an ugly fact."
— Thomas H. Huxley, Collected Essays, 8, 229
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Chapter 1

Introduction

1.1 Counting the uncountable

Predicting the state of the physical world is difficult because the number of possible realisa-
tions is so large. If we could compute such states and the probability of observing them, we
would be able to quantify the likelihood of a wide range of phenomena. In some cases (e.g.
in the statistical mechanical description of the formation of a crystal) we can perform such
calculations, but in others (e.g in estimating the likelihood of the emergence of life, or even
of the formation of a universe like ours), we cannot. But in the latter examples this may also
be due to the fact that the question is ill-posed. However, even in the cases where we know
in principle how to identify all possible states of a system, the number of states involved is
so large that a full enumeration would greatly exceed the ‘computational capacity’ of the
universe [1] – namely the maximum amount of information that the universe can register
or the maximum number of operations that has performed over its history – and, therefore,
would not be possible.

When the states of a system can be described by the invariant stable structures of some
dynamics, be it the extrema of a high-dimensional function that can be reached by steepest
descent, or the fixed points and limit cycles of a generic dynamical system, the enumeration
problem can be reduced to a sampling one: The ‘uncountable’ number of possible states
can be estimated by sampling a few of these states at random and measuring the average
size of their basin of attraction, that is the set of all initial conditions leading to a particular
stable structure. Moreover, since the probability of sampling a state is related to the size of
its basin of attraction, estimating the probability of an unlikely – but known – state becomes
equivalent to measuring the (high-dimensional) volume of its basin of attraction.

To illustrate the principle, imagine you were asked to estimate the number of buildings in
a large city by looking at an aerial map. Since counting hundreds of thousands of buildings is
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out of the question, we turn the counting problem into a sampling one: we randomly drop our
pencil onto the map and record the area of the building on which the pencil lands. Clearly,
the probability of sampling a building is proportional to the area it covers and the observed
distribution of areas will be biased. After collecting several samples, we can estimate the
(unbiased) average size of the buildings by a weighted sum of the areas, where each element
of the sum is weighted inversely proportional to its value. Finally, the total number of
buildings can be estimated dividing the total urban area by the thus obtained average area of
the buildings that tile it. This principle is completely general and it extends to any problem
that aims to find the number of stationary points of a high-dimensional scalar cost function
or stable structures of a dynamical system. One such cost function is the potential energy of
a system, defining the energy landscape (or potential energy surface).

Enumerating the number of solutions or stationary points, and their distribution, for
certain classes of random functions, is a classical problem in mathematics and statistics [2–15].
In statistical physics, ad hoc numerical and theoretical methods have been developed in the
realms of random Gaussian and polynomial fields [16–24]. In this sense, particular attention
has been devoted to the mean-field p-spin spherical model of a spin glass with quenched
disorder [25–29]. A related area is the computation of the configurational contribution to the
entropy of structural glasses [30, 31].

While in this work we focus mainly on the study of soft-sphere packings [32–36], the
significance of the approach extends to the study of biological molecules [37, 38], marginally
stable glasses [39, 40], dynamical system [41, 42], machine learning [43–48], and even
cosmology [49–53] and string theory [54–56].

1.2 On Edwards’ theory of powders

In the late 1980s Sir Sam Edwards proposed that a formalism analogous to classical statistical
mechanics could be formulated to describe the states of a disordered granular material. In his
proposition, which appeared under the title “Theory of powders” [57], Edwards stated that a
statistical mechanics of granular matter could be derived on the basis that powders can be
“completely defined by a very small number of parameters [such as their density] and can be
constructed in a reproducible way [say by tapping or shaking]”. Moreover, because granular
media are typically made of a very large number of components, a statistical description
would seem appropriate, and we may assume that “when N grains occupy a volume V they
do so in such a way that all configurations are equally weighted. We assume this; it is the
analog of the ergodic hypothesis of conventional thermal physics” [58]. In a succinct, and at
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times intuitive style1 – not to be confused with lack of clarity, but rather originating from the
intention of developing the simplest theory possible for granular powders [60] – Edwards
had dared to describe a many-body, strongly interacting and out-of-equilibrium system –
the archetype of complexity – using the standard tools of Gibbsian equilibrium statistical
mechanics.

1.2.1 The volume ensemble

Edwards’ great insight was to propose that the collection of all stable packings may play the
role of an ‘ensemble’ and that a statistical mechanical formalism would result if one assumed
all packings to be equally likely. Hence, drawing the analogy with classical ‘Gibbsian’
statistical mechanics, the HamiltonianH({pppi,xxxi}) corresponding to the total energy of the
(closed) system, was replaced by a volume functionW({xxxi, t̂tt i}) corresponding to the volume
of the system as a function of the particle positions xxxi and the orientations t̂tt i. One can then
write the microcanonical density of states as

e−SB(V )
δ (V −W(qqq))ΘJ(qqq), (1.1)

where S is the granular entropy of the system

SB(V ) = kE lnΩ(V ) (1.2)

and
Ω(V ) =

∫
δ (V −W(qqq))ΘJ(qqq)dqqq, (1.3)

is the total number of packings at volume V , and the B subscript stands for ‘Boltzmann-like’.
ΘJ(qqq) enforces that packing qqq ≡ {xxxi, t̂tt i, fff i j}, where fff i j are the interparticle forces, is a
solution to the “Jamming Satisfaction Problem” [59] or, in other words, the requirement that
the constraints of statical mechanical equilibrium are satisfied; these are: force and torque
balance, Newton’s 3rd law, positivity of forces and, for frictional packings, Couloumb’s
law of friction. The latter two, being inequality constraints, are notoriously difficult to
implement [61]. Note that the conjectured flat measure “à la Edwards” stems precisely from
the definition of ΘJ . Unlike in thermal statistical mechanics, where (inverse) temperature
and energy are measured in different units (if only statistical mechanics had been developed
earlier!), kE is not necessary but “makes the equation more recognisable” [59], in practice
we assume kE = 1 everywhere.

1By his own admission, Edwards writes [59] “[this work] is dedicated to Elliot Lieb, my first research
student, who is as rigorous and accurate a worker as I am vague; but all sorts are needed in a world.”
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When the system is driven by external disturbances, e.g. vibrations, the density (volume)
of the granular system will approach a steady state and enter a reversible branch where,
by modulating the magnitude of the external disturbance, the system can move between
two characteristic densities φ

(RCP)
min and φ

(RCP)
max and, at each point along the branch, fluctuate

around a stationary value [62]. Thus, it seems natural to move to a canonical description
of the granular system (although Edwards’ proposition came a decade earlier than these
experiments), where the canonical distribution takes the form

p(qqq) =
1

Z(V )
e−W(qqq)/X

ΘJ(qqq) (1.4)

and the partition function is

Z(V ) = e−SB(V )+V/X =
∫

e−W(qqq)/X
ΘJ(qqq)dqqq, (1.5)

where the temperature-like variable X , named compactivity, is defined such that

1
X

=
∂SB(V )

∂V
. (1.6)

The compacitivity X is at its minimum (maximum) when the system is as closely (losely)
packed as possible. For a system of monodisperse spheres, X → ∞ at random loose packing
and X → 0 for the cubic close-packed (fcc) crystal.

1.2.2 The laws of granular thermodynamics

The parallelism with classical thermodynamics can be taken further and a set of laws of
granular thermodynamics can be postulated [63]

Zeroth law. The basis of all thermometry, it establishes that if two systems A and B are in
thermal equilibrium such that XA = XB, and A is also in thermal equilibrium with a
third body C such that XA = XC, then a consistent definition of temperature requires
that XB = XC.

First law. This can be expressed in differential form as

dV = XdS−dA, (1.7)

where dA has the dimensions of volume and is the analogue of the work done on
the system. It is not clear how one should distinguish between the two terms on the
right-hand side of Eq. (1.7) in a granular system.
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Second law. Any irreversible process in a granular system is associated with an increase in
granular entropy, such that

dS≥ 0. (1.8)

The second law proclaims the central position of entropy in Edwards’ statistical
mechanics.

Third law. In the limit of absolute zero temperature X → 0, the system achieves a unique
state with zero entropy. For a system of monodisperse hard spheres, this corresponds
to the perfect crystal, however for a generic granular system one expects some residual
entropy such that

lim
X→0

S = const. (1.9)

A derivation of the second law was sketched via the H-theorem by defining an appropriate
Boltzmann equation for dense granular packings [59].

1.2.3 The stress volume ensemble

Soon it was realised that volume alone was not sufficient to describe the state of the system
and that the stress Σ̂ exerted on the boundary must play a role [64–66]. Furthermore, in
the presence of friction the forces between particles cannot be deduced from the particles’
positions and orientations alone, and interparticle forces need to be specified for each
microstate. Hence, the system subject to constraints on both V and Σ̂ must have an entropy
S(V, Σ̂) defined via a generalised microcanonical density of states

e−SB(V,Σ̂)δ (V −W(qqq))δ (Σ̂− Φ̂(qqq))ΘJ(qqq) (1.10)

such that
SB(V, Σ̂) = lnΩ(V, Σ̂) = ln

∫
δ (V −W(qqq))δ (Σ̂− Φ̂(qqq))ΘJdqqq, (1.11)

where the macroscopic force-moment tensor is

Φ̂(qqq) =
N

∑
i=1

zi

∑
j=1

rrri j⊗ fff i j, (1.12)

rrri j is the contact vector between particles i and j and the inner sum is over all zi contacts of
particle i.
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The generalised canonical distribution is therefore

p(qqq) =
1

Z(V, Σ̂)
e−W(qqq)/X−Tr[α̂Φ̂(qqq)]

ΘJ(qqq) (1.13)

and the partition function is

Z(V, Σ̂) = e−SB(V,Σ̂)+V/X+Tr(α̂Σ̂) =
∫

e−W(qqq)/X−Tr[α̂Φ̂(qqq)]
ΘJ(qqq)dqqq, (1.14)

where we have introduced the inverse angoricity tensor, another temperature-like variable,
defined as

α̂ =
∂SB(Σ̂)

∂ Σ̂
(1.15)

Many interesting results have been obtained by restricting theoretical treatment to only the
volume or the stress ensemble (by assuming decoupling in certain limits, such as constant vol-
ume or constant pressure). However, in general, Eq. (1.14) is a function of both compactivity
X and inverse angoricity α̂ , which are interdependent, and it cannot therefore be factorised
in terms of a pure volume and a pure stress partition function, Z(X , α̂) ̸= Z(X)Z(α̂) [67].

1.2.4 The rheology of powders

One of the main aims of Edwards statistical thermodynamics of granular materials was to
arrive at a formalism that would make it possible to derive the equations that describe the
flow of powders. The original idea was to derive the equations of flow for a granular system
by complementing the continuity equation and the equations of motion with an ad-hoc energy
equation (analogous to the heat-conduction equation) of the form [60]

∂X
∂ t

+L(X) = F(ê), (1.16)

where ê is the deformation tensor, and a constitutive equation describing the stress tensor
as a function of the deformation tensor and the system’s thermodynamic state, that depends
on the density φ and the compactivity X. The flow could then be modelled within a simple
φ , vvv, X framework.

An alternative approach to understand the dynamics of granular materials using a for-
malism analogous to that of the Boltzmann and Fokker-Plank equation was also developed,
which allowed to derive under simplifying assumptions a relation between the diffusion
constant and the compactivity [59, 65].
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Edwards’ fundamental idea was that the dynamics of slowly driven granular systems are
controlled by the statistical properties of the jammed states. It seems plausible that if the
system is driven slowly enough, then the transition from one jammed state to another will
depend on the properties of the jammed states, in close analogy to well known models of
glassy dynamics for thermal systems [68–70]. While still in its infancy, experimental and
theoretical work in this avenue is promising [61, 71, 72].

1.2.5 Edwards’ contested hypotheses: ergodicity and equiprobability

Edwards’ formulation of granular statistical mechanics builds on two bold hypotheses,
namely the assumptions of ergodicity and of equiprobability of all jammed states. Both
hypotheses are at the origin of great controversy about the legitimacy of Edwards’ proposal.

Assuming ergodicity became natural following the seminal work of “the Chicago group”
[62] demonstrating, in an experimental study of the compaction of spherical glass beads as
a function of tapping intensity, the existence of an irreversible and reversible branch in the
response. After an initial transient response, the system reaches a steady state and as the
tapping intensity is varied the system retraces a stable branch in the density versus tapping
intensity plane. While these results were validated by a number of experimental [73–75] and
theoretical [76–81] studies, their interpretation was challenged by studies testing ergodicity
by directly comparing time averages with ensemble averages, which were found to be in
agreement [82–85]. However, a more detailed analysis comparing identical realizations of the
system prepared with the same preparation protocol, shows that the replicas do not sample
the same stationary distributions [86–90]. The failure of ergodicity seems to be connected to
the fraction of persistent contacts viz. contacts that do not break upon repeated disturbance
[90], suggesting that the protocol might not allow the system to visit all regions of phase
space, and therefore breaks ergodicity.

The hypothesis of equiprobability of jammed states, also known as Edwards’ conjecture,
was inspired by the analogous assumption of J. Willard Gibbs that at fixed total energy,
the states of an equilibrium (closed) system are equally likely to be observed [91]. The
unsophisticated way of testing the conjecture is by generating all possible packings and
measuring the frequency with which each packing is visited. The problems with this approach
should be obvious, the number of possible states is exceedingly large for all but the smallest
system sizes and, particularly in experiments, it is extremely difficult to carefully control the
effects of protocol, geometry and friction. Following the brute-force approach, simulation
studies enumerating the number of minima in the energy landscape of small systems of soft
frictionless disks, found highly non-uniform frequency distributions [85, 92]. These results
for very small numbers of particles were corroborated by experiments [93]. On the other
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hand, exact results for a simplified 2-dimensional system of hard disks confined between two
parallel hard walls confirmed Edwards’ assumption and showed that two systems at contact
will maximise entropy by attaining equal compactivities [94].

The resolution of this point is important as this assumption underlies the very definition
of entropy proposed by Edwards, see Eq. (1.11). A significant step forwards was taken
when Frenkel and co-workers introduced a numerical method with complete control on the
sampling bias introduced by the protocol and capable of computing the a-priori probability
of observing a jammed packing without recurring to extensive simulations [32, 34]. The
numerical calculations of the total number of packings for a system of up to 128 soft disks
confirmed that, for jammed packings at fixed volume fraction greater than the jamming den-
sity, equiprobability breaks down. Nonetheless, when properly defined, Edwards’ definition
of granular entropy is meaningful and extensive. Specifically, they propose a ‘Gibbs-like’
definition of entropy of the form

SG =−
Ω

∑
i=1

pi ln pi− lnN! (1.17)

where where pi is the probability of observing packing i and the division by N! ensures that
two systems in identical macrostates are in equilibrium under exchange of particles [95–97].
The approach of Refs. [32, 34] exploited the fact that each soft sphere packing is a minimum
energy configuration in an energy landscape. By measuring the size of the basin of attraction,
they were able to compute the probability of a particular packing to occur, as well as the total
number of packings. The results of the computation of the number of soft disks demonstrated
that, at last, Edwards’ conjecture could be tested conclusively.

1.3 Contributions of this thesis

Firstly we address the question of whether the conclusions of Refs. [32, 34] are valid in
three-dimensions. In Chapt. 2 we perform the first direct computation of the number of
packings for systems of three-dimensional soft spheres, and test whether Edwards’ definition
of granular entropy is meaningful. Going from two to three dimensions required substantial
algorithmic improvements: the new algorithm implementation was computationally O(100)
more efficient than the one used by Asenjo et al. [34], thus making the calculations tractable.
Nonetheless, the calculations required hundreds of years of cpu-time.

In Chapt. 2 we also present a power-law relation between the basin volume and the
pressure (energy) of a soft sphere packing, suggesting a hierarchical organization of the
energy landscape, where low-energy minima have large basin volumes and high-energy
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minima have small basin volumes. This expression allowed us to compute the granular
entropy at fixed volume and stress. The power-law exponent is a good measure of the
strength of the correlation between a packing’s structural parameters, such as the pressure,
and its basin volume. This fact will be essential to test Edwards’ conjecture in Chapt. 3.

When packings of soft disks are above the jamming density – the point where the system
goes from a fluid to a disordered solid – they have been shown not to be equiprobable [32,
34], in clear violation of Edwards’ conjecture. However, to our own surprise, in Chapt. 3
we are able to demonstrate that the conjecture becomes correct precisely at the (un)jamming
threshold, which is the point that Edwards had taken into consideration. Furthermore, we
find that if both stress and volume are taken into account then equiprobability holds beyond
jamming, in what is known as the Edwards’ stress-volume ensemble. In Chapt. 3 we also
show that the relative pressure fluctuations are a suitable order parameter to identify the
(un)jamming transition.

As argued in the opening, the problem of the enumeration of stationary points of a scalar
cost function or stable structures of a dynamical system, as well as the characterisation of the
geometry of their basins of attraction, is of broad interest. To this end, in a 2006 perspective
article, Strogatz and collaborators put forward the characterization of the ’sync basin’ volume
as a new line of research to the non-linear dynamics community [41]. They write: “the entire
topic of basins is something of an enigma in dynamical systems theory [. . . ] what we do not
know is how to compute the total volume or “measure” of a basin, which is what determines
the probability that a random initial state will be drawn toward the associated attractor.”
Much of this work is dedicated precisely to the problem of measuring, and characterising,
the volume of basins of attraction in the energy landscape.

The remainder of this thesis is dedicated to a discussion of the algorithms per se. We
present two novel techniques capable of measuring high dimensional volumes. In Chapt. 4
we present a method that relies on the multi-state Bennett acceptance-ratio method [98]
and that allows a more accurate computation of the volume of basins of attraction, as well
as yielding unprecedented insight into the structural properties of these high-dimensional
bodies. We illustrate the method by studying the effect of structural disorder on the shape of
the basins of attraction of soft sphere packings.

Because we evaluate the basin volume by performing a random walk within its body,
we are required to test at each step of the walk if we have left the basin, in which case we
reject the move. At present, the major obstacle to the scalability of the method is that the
only way to test whether we have left the basin is by performing a full energy minimisation.
This is wasteful because the trajectory of the path of steepest descent does not contribute in
any way to the volume computation. In Chapt. 5 we present a density propagation method
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that addresses this issue by computing the basin volume precisely from the steepest descent
trajectories. In a proof-of-principle demonstration, the technique is used to compute the
volumes of Gaussian mixture potentials and of a one-dimensional XY-model of eight spins.
The method also yields unique information on the geometry of high dimensional basins of
attraction.

Finally, in Chapt. 6 we show that it is possible to construct a rigorous Monte Carlo
algorithm that samples points in space proportionally to the average of a fluctuating weight
function. The method is successfully used to measure the volume of basins of attraction that
are fluctuating and therefore are only determined on average. This is a common situation, for
instance, in machine learning when the “training” is performed by stochastic optimisation.
We also demonstrate that the technique can be used to locate transition states along a known
reaction coordinate. We argue that this new approach has the potential to transform the
methodology of a certain class of high-throughput experiments.



Chapter 2

Turning intractable counting into sampling:
Computing the configurational entropy of
three-dimensional jammed packings

We present a numerical calculation of the total number of disordered jammed
configurations Ω of N repulsive, three-dimensional spheres in a fixed volume V .
To make these calculations tractable, we increase the computational efficiency
of the approach of Xu et al. (Phys. Rev. Lett. 106, 245502 (2011)) and Asenjo
et al. (Phys. Rev. Lett. 112, 098002 (2014)) and we extend the method to allow
for the computation of the configurational entropy as a function of pressure.
The approach that we use computes the configurational entropy by sampling the
absolute volume of the basins of attraction of stable packings in the potential
energy landscape. We find a surprisingly strong correlation between the pressure
of a configuration and the volume of its basin of attraction in the potential energy
landscape. This relationship is well described by a power law. Our methodology
to compute the number of minima in the potential energy landscape should be
applicable to a wide range of other enumeration problems in statistical physics,
string theory, cosmology and machine learning, that aim to find the distribution
of the extrema of a scalar cost function that depends on many degrees of freedom.

— This chapter is based on Ref. [35]: Stefano Martiniani, K. Julian Schrenk, Jacob D.
Stevenson, David J. Wales, and Daan Frenkel, Phys. Rev. E 93, 012906 (2016)
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2.1 Introduction

Many questions in physics are easy to pose but difficult to answer. One such question is: how
many microscopic states of a given system are compatible with its macroscopic properties?
In statistical mechanics, knowledge of this number allows us to compute the entropy, and
thereby predict the macroscopic properties of a system from knowledge of the interaction
between atoms or molecules.

In granular matter we can similarly ask how many microstates are compatible with a
given set of macroscopic properties. However, the computation of the corresponding absolute
entropy has thus far proven to be extremely challenging. Without such knowledge, it is not
possible to explore the analogies and differences between granular and Boltzmann entropy.
Being able to compute the configurational entropy is therefore clearly important. The more
so given that granular materials are ubiquitous in everyday life (sand, soil, powders). Many
industrial processes involve granular materials. In the natural world, the Earth’s surface
contains vast granular assemblies such as dunes, which interact with wind, water, and
vegetation [99]. Packings of particles that are soft or biological in nature, such as cells,
hydrogels and foams are also known to undergo jamming [100] and their behaviour to be
“granular” viz. not subject to thermal motion. Moreover, as glasses and granular materials
share many properties it has been proposed that their physics may be controlled by the same
underlying principles [101].

The study of granular materials is complicated by the fact that these materials are
intrinsically out-of-equilibrium. In fact, thermal motion plays no role in granular matter. It
maintains its configuration unless driven by external forces. As a consequence, the properties
of granular materials depend upon their preparation protocol.

Granular materials are athermal and cannot therefore be described by statistical mechanics.
However, these materials can exists in a very large number of distinct states and this fact
inspired Edwards and Oakeshott [57] well over two decades ago to propose a statistical-
mechanics-like formalism to describe the properties of granular matter. In its original version,
the Edwards theory assumed that all mechanically stable configurations (‘jammed’ states) are
equally probable and that the logarithm of the number of these states plays a role similar to
that of entropy. In this theoretical framework, the volume of the system and its compactivity
(i.e. the derivative of volume with respect to the configurational entropy) are the analogues
of the energy and temperature in thermal systems, see Sec. 1.2.1 for a full discussion.

In the absence of explicit calculations (or measurements) of the absolute configurational
entropy, a direct test of the Edwards hypothesis has proven difficult, and different authors have
arrived at different conclusions based on direct and indirect tests in either simulations [92,
102–104] or experiments [93, 105, 106]. In addition, alternative definitions of entropy
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have been proposed to characterise the complexity of granular systems while circumventing
explicit enumeration of states [107, 108].

Numerous tests of the Edwards volume ensemble have focused on the determination of
the compactivity [67, 86, 109–115]. However, the role of compactivity as a temperature-
like quantity is problematic as Puckett and Daniels [61, 116] have shown that it does not
satisfy the equivalent of the zero-th law of Thermodynamics - the law that is the basis of all
thermometry.

Edwards’ theory has been generalised to include the distribution of stresses within
the system through the force-moment tensor [65, 66, 117, 118] and another analogue of
temperature emerged, known as angoricity, which is a measure of the change in entropy with
stress, see Sec. 1.2.3 for a detailed description. The experiments by Puckett and Daniels
[116] showed that angoricity, unlike compactivity, is a temperature-like quantity as it satisfies
the zero-th law.

To date only a few examples of numerical tests of the generalised Edwards ensemble
are available [66, 84, 85, 116]. Numerical tests of the stress ensemble focus on systems of
soft spheres near jamming where the compactivity X → ∞ and fluctuations in volume are
negligible compared to stress fluctuations [66, 118]. Wang et al. [84, 85] proposed a unified
test that compared ensemble averaged results over volume and stress with predictions for
the jamming transition, finding agreement; we note, however, that in the latter approach the
results rely significantly on the equiprobability assumption.

When the system is composed of very stiff grains, or is close to jamming, any small
deformation will lead to a large change in the contact forces. In these limits the geometric
and the force degrees of freedom can be decoupled, giving rise to the force network ensemble
(FNE) [119]. In this framework, force networks are constructed on a given geometry and
each force state is assumed to be equiprobable. The FNE has been utilised as a testing ground
for statistical frameworks [120–122].

More than two decades after its introduction many fundamental questions concerning
the Edwards hypothesis remain unanswered. This unsatisfactory state of affairs is at least
partly due to the fact that no efficient methods existed to measure or compute the absolute
configurational entropy directly. Until recently, the only way to determine the configurational
entropy was by direct enumeration of the distinct jammed states of a system. This method is
inefficient and cannot be used for systems that contain more than 10-20 particles. Over the
past few years, the situation on the numerical front has changed: recent numerical work by
Asenjo et al. [34, 89], based on an approach introduced by Xu et al. [32], has demonstrated
that it is possible to compute the number of distinct jammed states of a system, even when this
number is far too large (e.g. 10250) to allow direct enumeration. The approach of Refs. [32,
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Fig. 2.1 Entropy as a function of system size N for two (Ref. [34]) and three-dimensional
(this work) jammed sphere packings. Dashed curves are lines of best fit of the form S = aN.

34, 89] replaces an intractable enumeration problem by a tractable scheme to sample the
(absolute) volume of the basins of attraction of stable states in the potential energy landscape.

We note that the geometrical structure of the basins of attraction of jammed states
had been studied by O’Hern and co-workers [92, 123, 124]. O’Hern also reported direct
enumeration estimates of the number of jammed states of small systems. A rather different
technique (‘basin sampling’) to count the number of energy minima in the potential energy
landscape of small clusters had been reported by Wales and co-workers [125, 126].

We note that, for the system (and protocol) considered by Asenjo et al., not all packings
are equally probable. However, as shown in Ref. [34], the equal-probability hypothesis is not
needed to arrive at a meaningful definition of an extensive granular entropy, Eq. (1.17).

We stress that, even though the approach of Refs. [32, 34, 89] allows to solve enumeration
problems which were far from possible using direct enumeration, it is still computationally
expensive. Thus far, it had only been applied to two-dimensional packings. Substantial
‘technical’ improvements were needed to make the method fast enough to deal with three-
dimensional systems.

In this chapter, we present the first enumeration of the number of jammed packings for
three-dimensional systems consisting of up to 128 soft spheres. A direct comparison of
the entropy measured as a function of system size for two and three-dimensional jammed
sphere packings is shown in Fig. 2.1. Furthermore we show how our improved procedure
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Fig. 2.2 Hard sphere fluid at φHS = 0.5, left, and HS-WCA jammed packing at φSS = 0.7,
right, for a system of 44 polydisperse hard spheres with mean radius ⟨rh⟩= 1 and standard
deviation σHS = 0.05. We prepare the polydisperse HS fluid configurations at fixed packing
fraction φHS = 0.5 by a Monte Carlo simulation. Particles are then inflated by the same
factor, proportional to their radius (spheres are coloured according to their radius), to obtain
an over-compressed soft spheres jammed packing at φSS = 0.7 by an infinitely fast quench
(energy minimisation).

allows first-principles computation of configurational entropy as a function of system size and
pressure. The method and the technical improvements needed to overcome this numerical
challenge are presented alongside the main results.

The remainder of the chapter is organised as follows. Sec. 2.2 describes the basic
principle of the mean basin volume method for counting, and explains how that strategy
can be applied to enumerate granular packings. Sec. 2.3 outlines our protocol for sampling
different granular packings, and it describes the corresponding potential energy landscape and
minimisation techniques. Application of thermodynamic integration to compute the volume
of a basin of attraction in such a landscape is described in Sec. 2.4. Aspects of the data
analysis tools used on the histograms of sampled basin volumes, and related configurational
entropy definitions, are described in Sec. 2.6. The enumeration and entropy results for
three-dimensional jammed sphere packings as a function of system size and pressure are
reported in Sec. 2.7. Conclusions are drawn in Sec. 2.8. Further technical background is
given in the appendices.
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2.2 Basic principle: counting by sampling

In this section, we briefly review the numerical approach that we use to compute the number of
distinct jammed states. We stress that the approach that we use has much wider applicability
than the counting of granular packings [16–31, 33, 43–46, 49–55]. In the context of granular
packings, our aim is to compute the number of ways Ω in which N spheres can be arranged
in a given volume Vbox of Euclidean dimension d. Knowledge of Ω allows us to compute
configurational entropies and related quantities from first principles [34, 57]. Our approach
is based on a rigorous mapping of the enumeration problem onto counting the number of
minima of a potential energy landscape [32]. The approach makes no use of a harmonic [127]
or quasi-harmonic [128] approximation. For a system of hard particles the potential energy
function is discontinuous, that is, the energy of the system is either zero, if no two particles
overlap, or infinity otherwise. Then, at jamming, in the absence of rattlers, basins of attraction
are single points in configuration space and they have no associated volume, see Fig. 2.3a.
This does not mean that we cannot sample the energy minima of a system of hard particles.
The reason is that all jammed structures of hard particles correspond to the zero potential
energy minima of a system with a continuous repulsive potential with the same range as the
hard-core diameter of the hard particles [123, 129, 130], see Fig. 2.3c. In what follows, we
focus on this class of systems, but consider the broader ensemble of both zero and non-zero
potential energy minima of a soft-sphere system at fixed volume fraction. O’Hern et al. [123,
130] have addressed the question of whether studying such an ensemble of states is relevant
to the study of hard-sphere systems and found that when approaching the hard sphere limit
by making the potential harder, the probability distributions of finding jammed states as a
function of volume fraction, as well as the jamming volume fraction in the thermodynamic
limit (φ J

N→∞
), remain identical. In particular, we consider spherical particles with a hard core

and a short-ranged continuous repulsive interaction. Under conditions where this system
is jammed, a system with only the hard-core interactions would still be fluid and would
sample the accessible configuration space uniformly. This remaining accessible volume is
partitioned in basins of attraction defined by the soft shells, see Fig. 2.3. The HS-WCA
potential used to simulate hard-core plus soft-shell interactions and the packing preparation
protocol are described in Sec 2.3.2. For an illustration of the packing preparation protocol
refer to Figs. 2.2-2.3. As we argue below, using an HS-WCA model greatly improves the
efficiency of determination of basin volumes.

Let us denote the total available volume in dN-dimensional space as VJ . Note that VJ

is not the total volume of configuration space (V N
box), but just that part of the volume that is

free of hard-core overlaps – the configurational part of the partition function of the hard-core
system at the number density under consideration – and not in a fluid state, see Fig. 2.3b.
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Fig. 2.3 (a) Simplified illustration of configurational space for a hard-sphere system at volume
fraction φHS ≥ φ J . Solid dots and grey-shaded regions correspond to jammed packings and
regions that are inaccessible due to hard core overlaps, respectively. (b) Configurational
space for a hard-sphere system at volume fraction φHS < φ J . The white regions correspond
to accessible fluid states. The total volume of accessible fluid states VJ can be computed from
the equation of state of the hard sphere fluid (see Appendix C). (c) Configurational space of
the corresponding HS-WCA system at density φSS = φ J . All jammed structures of the hard
sphere system at the same density (solid dots in (a)) correspond to the zero potential energy
minima of the HS-WCA system (solid dots in (c)). Single coloured regions correspond to the
basins of attraction of individual minima. Basins of attraction tile the configurational space,
such that VJ = ∑

Ω
i=1 vi, where vi is the volume of the i-th basin. From the average volume of

the basins of attraction we can find the total number of jammed packings Ω, as in Eq. 2.3.

Since the accessible configuration space is tiled by the basins of attraction of the distinct
energy minima [127, 131–133] we can write:

VJ =
Ω

∑
i=1

vi, (2.1)

where vi is the volume of the i-th basin of attraction and Ω is the total number of distinct
minima. We thus make the simple observation:

Ω

∑
i=1

vi =
Ω

Ω

Ω

∑
i=1

vi = Ω⟨v⟩, (2.2)

where ⟨v⟩ is the mean basin volume, from which it follows immediately that

Ω =
VJ

⟨v⟩ . (2.3)

We note that, for sphere packings, VJ is known from the equation of state of the underlying
hard sphere fluid (see Appendix C) and we can measure ⟨v⟩ by thermodynamic integration,
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as discussed in detail in the Sec 2.3. The approach of [32, 34] has thus turned the intractable
enumeration problem of finding Ω into a sampling one, namely measuring ⟨v⟩.

2.3 Packing preparation protocol

2.3.1 Sampling packings

The physical properties of granular packings may depend strongly on the preparation protocol.
This is illustrated by the Lubachevsky-Stillinger algorithm (LSA) procedure to prepare
jammed packings of hard particles [134] by compression (or, equivalently, by ‘inflation’ of
the particles). If a monodisperse HS fluid is compressed rapidly the LSA will generate a low
volume-fraction disordered packing. However, for (very) slow compression rates, LSA will
produce dense crystals [134, 135].

In the present work, we study a fluid of polydisperse spheres. We use a protocol related to
a Stillinger-Weber quench that maps each fluid state to a local minimum, or “inherent struc-
ture”, connected by a path of steepest descent [131, 136], see Appendix A for a discussion of
paths of steepest descent.

To prepare the polydisperse fluid, we draw N particle radii {r}N from a Gaussian dis-
tribution Normal(1,σHS)> 0, truncated at r = 0 (note that in our application the standard
deviation σHS is sufficiently small that it is extremely improbable to ever sample a negative
radius). We set the box size to meet the target packing fraction of the hard sphere fluid φHS

and then place the particles in a valid random initial hard spheres configuration. The initial
configuration is then evolved by a MC simulation [137] consisting of single particle random
displacements and particle-particle swaps, and after equilibration, new configurations are
recorded at regular intervals. We choose the length of these intervals such that, on average,
each particle diffuses over a distance equal to the diameter of the largest particle. As long as
φHS is well below the volume fraction where the fluid undergoes structural arrest, the allowed
configurations of the fluid can be sampled uniformly. Importantly, this volume fraction is
well below the random close packing (φ (RCP, 3D)

HS ≈ 0.64 and φ
(RCP, 2D)
HS ≈ 0.84 [123]).

Given these HS fluid configurations, we now switch on the soft, repulsive interaction
to generate over-compressed jammed packings of the particles (see Fig. 2.2). The particles
are inflated with a WCA-like potential [138] to reach the target soft packing fraction φSS >

φ
(RCP)
HS > φHS. The hard spheres are inflated proportional to their radius, so that the soft

sphere radius is

rs =

(
φSS

φHS

)1/d

rh, (2.4)
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where d is the dimensionality of the box. Clearly, this procedure does not change the
polydispersity of the sample.

2.3.2 Soft shells and minimisation

We define the WCA-like potential around a hard core as follows: consider two spherical
particles with hard core distance rh and soft core contact distance rs = rh(1+ θ), with
θ = (φSS/φHS)

1/d − 1. We can then write a horizontally shifted hard-sphere plus WCA
(HS-WCA) potential as

uHS-WCA(r) =





∞ r ≤ rh,

4ε

[(
σ(rh)

r2− r2
h

)12

−
(

σ(rh)

r2− r2
h

)6
]
+ ε

rh < r < rs,

0 r ≥ rs

(2.5)

where σ(rh) = (2θ + θ 2)r2
h/21/6 guarantees that the potential and its first derivative go

to zero at rs. For computational convenience (avoidance of square-root evaluations), the
potential in Eq. (2.5) differs from the WCA form in that the inter-particle distance in the
denominator of the WCA potential has been replaced with a difference of squares. Our
potential still resembles as 12-6 potential and any difference, for our purpose, is immaterial:
we just need a short-ranged repulsive potential that diverges at the hard-core diameter and
vanishes continuously at the soft-core diameter. The functional form of this potential is very
similar to the HS-WCA potential used by Asenjo et al. [34], but cheaper to compute. We
note that this potential is a C1 type function, i.e. its first derivative is continuous but not
differentiable and its second derivative is discontinuous at rs.

A power series expansion of Eq. 2.5 yields

lim
r→rs

uHS-WCA = ε

(
12rs

r2
h− r2

s

)2

(r− rs)
2 +O

(
(r− rs)

3) , (2.6)

hence, in the limit of no overlap, the interaction is repulsive harmonic (harder than the
repulsive Hertzian interactions with exponent 5/2).

Numerically evaluating this potential, we match the gradient and linearly continue
the function uHS-WCA(r) for r ≤ rh + δ , with δ > 0 an arbitrary small constant, such that
minimisation is still meaningful if overlaps do occur.
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The HS-WCA pair-potential was implemented using cell-lists [139, 140] with periodic
boundary conditions, guaranteeing O(N) time complexity to the energy and gradient evalua-
tions. Energy minimisations were performed with the CG_DESCENT algorithm [141–143]
which, compared to FIRE [140, 144], reduces the average number of function evaluations for
our system by a factor of 5, while preserving many of its desirable properties.

2.4 Basin volume by thermodynamic integration

The basin of attraction of a given minimum-energy configuration is the collection of all
points connected to that minimum via a path of steepest descent [125, 145], see Appendix A.
To measure the volume of a basin of attraction in the PES, we use thermodynamic integration
[146, 147] and parallel tempering (PT) [137, 148–150].

The basic idea behind the method is that, but for the sign, the logarithm of the basin
volume can be viewed as a dimensionless free energy. We cannot determine this free energy
directly. We now switch on an increasingly steep harmonic potential that has its minimum at
the minimum of the basin. In the limit of very large coupling constants (how large depends
on the shape of the basin) the boundaries of the basin no longer affect the free energy of the
system, which has effectively been reduced to a dN dimensional harmonic oscillator with
known free energy (for more details, see Appendix B.1). For zero coupling constant, instead,
the system is completely unconstrained and therefore in the state of interest. Thermodynamic
integration allows us to compute the free energy difference between a reference state of
known free energy and the (unknown) free energy associated with the original basin of
attraction.

A closely related approach is often used to compute the free energy of crystals of
particles with a discontinuous potential, such as hard spheres [146, 147, 151]. Details of that
method are summarised in the Appendix B.2, and the extension of the technique to basin
volume measurement is described below. Details of the Hamiltonian PT are discussed in
Appendix B.3.

2.4.1 Free energy calculation for basin volumes

To measure the volume of a basin of attraction by thermodynamic integration, we perform a
walk inside the basin, that is, we start the MCMC random walk from the minimum energy
configuration xi and we reject every move that takes us outside the basin [32–34]. This
procedure can be cast in normal Monte Carlo language by defining an effective potential
energy function (oracle) UB(x|xi) which is zero inside the basin and infinite outside. We can
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then write the volume of the basin:

vi =
∫

dx e−UB(x|xi). (2.7)

In order for the oracle to test whether a proposed configuration is inside or outside the basin,
a full energy minimisation must be performed. The numerous potential energy calls required
for a full energy minimisation represent the major obstacle to the scalability of the method.

We view the basin negative log-volume as a dimensionless free energy Fi ≡− ln(vi) [32]
and compute it by thermodynamic integration, as described in Appendix B.2. Therefore, we
write, analogously to Eq. (B.13):

− lnvi = Fhar(kmax)+∆F

≡ Fhar(kmax)−
1
2

∫ kmax

0
dk ⟨|x−xi|⟩k ,

(2.8)

where xi denotes the coordinates of the i-th energy minimum and ∆F , defined above, is the
dimensionless free energy difference between the reference state and the uncoupled random
walker (with k = 0).

Unless kmax, the maximum spring constant of the harmonic reference system, is very
large, a finite fraction of the points belonging to the purely harmonic reference system will
be located in the region where UB = ∞. We can correct for this effect in our calculation of
Fhar(kmax) by computing the ratio of the partition functions of a system with a harmonic
spring constant kmax, both with and without the basin potential energy function UB. This
ratio is given by

R≡

∫
dxexp[−U(x|xi,kmax)−UB(x|xi)]
∫

dxexp[−U(x|xi,kmax)]
, (2.9)

where U is the sum of the hard-core potential and the harmonic potential with spring constant
kmax, see Eq. (B.12). We note that R can be computed using a ‘static’ (i.e. non-Markov
chain) Monte Carlo simulation, sampling directly from the Boltzmann distribution of the
harmonic oscillator with spring constant kmax. Since the integral in the denominator is known
[see Eq. (B.2)], we write the dimensionless free energy of the harmonic reference state for a
basin as

Fhar(kmax) =−
dN
2

ln
(

2π

kmax

)
− lnR. (2.10)

We note that, in order to avoid a singularity in the integrand, it is useful to perform the
simulations fixing the centre of mass. It follows that the same corrections to the free energy
as derived in Refs.[146, 147, 151] must be applied: similarly to the expression obtained for
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Fig. 2.4 Average squared displacement
〈
|x−x0|2

〉
k as a function of the spring constant

k (symbols). The dashed line shows the expression in Eq. (B.19). The data is measured
for a packing of N = 32 spheres, with φHS = 0.5 and φSS = 0.7 via Hamiltonian PT. Inset:
corresponding integrand for the thermodynamic integration, resulting from the change of
variables in Eq. (B.24).

the free energy of solids Eq. (B.16), but with the additional correction defined in Eq. (2.10),
we write the basin volume as:

− lnvi = ∆F(CM)− ln(Vbox)

− (N−1)d
2

ln
(

2π

kmax

)
− lnR,

(2.11)

where the dimensionless free energy difference ∆F(CM) is defined as in Eq. (2.8) but with
the ensemble averages (the integrand) computed with a constrained centre of mass and it is
evaluated as in Eq. (B.24).

Figure 2.4 shows an example of the mean squared displacement
〈
|x−x0|2

〉
k, as a function

of the spring constant k, along with the approximate expression in Eq. (B.19) used to construct
the change of variables in Eq. (B.24). The resulting integrand, after the variable transform, is
shown in the inset of Fig. 2.4.
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2.5 Basin volume method summary

In summary, to count the number of ways spheres can pack into a given volume, we use the
mean basin volume method outlined in Sec. 2.2. We perform the following simulations and
analysis steps to obtain the required results:

1. Obtain a number of different snapshots of an equilibrated hard sphere fluid at the
desired volume fraction φHS, as described in Sec. 2.3.1. This procedure fixes the
number of measured basin volumes.

2. Over-compress the sphere configuration by adding a soft shell. This compression yields,
upon energy minimisation, a jammed packing with soft volume fraction φSS > φHS.

3. Estimate the maximum spring constant for the PT simulations, kmax in Eq. (2.8),
such that R in Eq. (2.9) reaches a value between 0.85 and 0.9. This is done by
direct sampling and also gives the value of the average squared displacement for kmax,〈
|x−x0|2

〉
kmax

.

4. Obtain a preliminary estimate of the average squared displacement without harmonic
tethering,

〈
|x−x0|2

〉
0, by performing a MCMC walk in the basin. Use this result, with

the estimate of kmax from the previous step, to determine the spring constants k for the
PT simulation, using Eqs. (B.22) and (B.25).

5. Perform a PT simulation to sample
〈
|x−x0|2

〉
k, as described in Appendix B.3.

6. Compute the volume in Eq. (2.11) for each basin and analyse the distributions for all
basins, at fixed volume fraction and number of particles, as discussed in Sec. 2.6. This
makes use of the total accessible volume VJ , computed in Appendix C.

Evaluation and minimisation of potential energy functions was performed with the pele [140]
and PyCG_DESCENT [143] software packages. Monte Carlo simulations were performed
with the mcpele package [137].

2.6 Basin volume distributions

Once the volumes of multiple basins have been sampled, these data can be used to compute
the number of distinct packings [34], and from that, the Edwards entropy [57]. Furthermore
we analyse the distribution of pressures of the different energy minima at given volume. In
this work, we express pressure and volume in reduced units P/P∗ and v/v∗ everywhere with
v∗ ≡ (4π/3)⟨r3

h⟩ and P∗ ≡ ε/v∗ being the units of volume and pressure, respectively.
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2.6.1 Gibbs configurational entropy

Let us first consider the ‘Gibbs-like’ configurational entropy, SG, defined by Asenjo et al.
[34]:

SG =−
Ω

∑
i=1

pi ln(pi)− ln(N!), (2.12)

where pi is the probability to sample packing i. For our preparation protocol, packings are
sampled according to the volume of their basin of attraction, such that pi = vi/VJ . Then
Eq. (2.12) gives

SG =−
Ω

∑
i=1

pi ln(vi)+ ln(VJ)− ln(N!)

= ⟨F⟩B+ ln(VJ)− ln(N!).

(2.13)

The sum in Eq. (2.13) is the mean of the negative basin log-volumes (dimensionless free en-
ergies), as computed above, and weighted by the probabilities of preparing the corresponding
basins. Therefore, the entropy can be obtained directly, and without approximation, from the
sampled mean basin dimensionless free energy.

From Eq. (2.13) we can also write the entropy per particle in the thermodynamic limit as

sG(φSS) = 1+ ⟨ f ⟩B− ln(φSS)− fex(φHS), (2.14)

where fex(φHS) is the excess free energy of the hard spheres fluid. In deriving this results we
used Stirling’s approximation for large N and the fact that Vbox/v∗ = N/φSS.

2.6.2 Edwards configurational entropy

Edwards [57] suggested a ‘Boltzmann-like’ entropy, where S equals the logarithm of Ω, the
total number of packings. Asenjo et al. [34] showed that, even for polydisperse particles,
indistinguishability of macrostates requires that

SB = ln(Ω)− ln(N!). (2.15)

The subtraction of ln(N!) is necessary to guarantee extensivity of the entropy. Unlike the
Gibbs definition of entropy, Eq. (2.15) makes the explicit assumption of equiprobability of
states.

For a direct computation of the number of packings Ω, using Eq. (2.3), we need the
average basin volume ⟨v⟩. Since our preparation protocol samples each minimum with a
probability proportional to the volume of its basin of attraction, our samples of v are biased
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accordingly. Therefore, to obtain the unbiased average basin volume ⟨v⟩, the sampled basin
volume distribution needs to be unbiased [33, 34, 89]. The unbiasing method used in the
following work requires an analytical (or at least numerically integrable) description of
the biased basin free energy distribution function. Different approaches to modelling this
distribution give rise to somewhat different analysis methods, which all yield consistent
results. Again, we stress that no such additional steps are needed to compute the ‘Gibbs-like’
version of the configurational entropy.

We distinguish between the biased, B(F |N,φSS) (as sampled by the packing protocol),
and the unbiased, U(F |N,φSS), free energy distributions. Since the configurations were
sampled proportional to the volume of their basin of attraction, we can compute the unbiased
distribution as

U(F |N,φSS) =Q(N,φSS)B(F |N,φSS)eF (2.16)

where Q(N,φSS) is the normalisation constant

Q(N,φSS) =

[∫
∞

Fmin

dFB(F |N,φSS)eF
]−1

= ⟨v⟩(N,φSS). (2.17)

From Eq. (2.16), unbiasing of the raw free energy distribution seems straightforward, however
Asenjo at al. [34] noted that the most probable basins are about O(103) more probable than
the small ones. Upon unbiasing, this factor is multiplied by a factor of about e−20, hence
they observe that small basins are much more numerous than large ones and grossly under-
sampled.

To overcome this problem, one can fit the biased measured free energy distribution
B(F |N,φSS) and perform the unbiasing via Eq. (2.16) on the best fitting distribution. B(F |N,φSS)

must be bounded, hence it should decay with a functional form exp(−Fν) where ν > 1.
Before performing the fit we remove outliers from the free energy distribution following

the distance-based outlier removal method introduced by Knorr and Ng [152] described in
Appendix E.4, with D = 3σ , R = 0.5.

2.7 Results: Counting disordered three-dimensional sphere
packings

The mean basin volume method for enumerating the number of mechanically stable packings
was introduced by Xu et al. [32], and tested on a small system of soft disks. Asenjo et al.
[34] then made a number of modifications to the algorithm that allowed them to apply it to
larger systems of up to 128 disks. As was the case with Ref. [32], the calculations of Ref. [34]
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focused on two-dimensional systems because of the high computational costs involved in
studying 3D systems. Here we present results for systems of three-dimensional soft spheres.
We are thus in a position to compute the configurational entropy of a real (but idealised)
three-dimensional system.

We first describe an analysis similar to the one reported by Asenjo et al. [34] to verify the
extensivity of the entropy S(V ) at constant packing fraction. Next, we extend our approach
to the generalised Edwards ensemble, i.e. one based on a description of the system in terms
of its volume and pressure, to compute the generalised entropy S(V,P).

We investigate three-dimensional packings with system sizes ranging from 24 to 128 HS-
WCA particles, see Eq. (2.5), at φHS = 0.5 hard-sphere fluid packing fraction and φSS = 0.7
soft sphere packing fraction, corresponding to a ratio of the soft and hard-sphere radii ratio
rSS/rHS = 1.12, prepared following the protocol outlined in Sec. 2.3. For each system size
we compute the volume of the basin of attraction of approximately 1000 packings. Each
PT run (see Sec. 2.4) was performed on 15 parallel threads of a single eight-core dual Xeon
E5−2670 (2.6GHz, Westmere) node. Our choice of convergence criterion was such that
when the uncorrelated statistical error for each of the replicas’ mean square displacement
fell below 5% the calculations were terminated. This set-up translated in run times ranging
from 10 to 300 hours per basin depending on system size, which amounts to O(106) hours
of total run time and O(107) total cpu hours. We then analyse the corresponding distribution
of dimensionless free energies following the protocol described in Sec. 2.4 and 2.6 and
summarised in Sec. 2.5.

2.7.1 Extensivity of the entropy

We first computed two alternative definitions of entropy: the Gibbs entropy SG =−∑
Ω
i=1 pi ln(pi)−

ln(N!) and Edwards (Boltzmann) entropy SB = ln(Ω)− ln(N!), where pi is the probability
to sample packing i and Ω is the total number of mechanically stable states (or minima in
the energy landscape). A detailed discussion of these definitions is outlined in Sec. 2.6. The
results of these calculations are summarised in Fig. 2.5. Our results strongly suggest that,
also in three dimensions, the entropy thus defined is extensive. Note that extensivity requires
not only that the entropy scales linearly with system size, but also that it crosses zero at the
origin. The slightly higher value of the Edwards entropy compared to the Gibbs entropy is
consistent with the observation that Edwards’ equiprobability corresponds to the maximum
possible entropy of a system with Ω states. We also show that our estimates for the Edwards’
entropy are relatively insensitive to the precise strategy used to compute it. In Fig. 2.5, we
compare three methods: a parametric fit to a generalised Gaussian cumulative distribution
function (c.d.f.) using a non-linear least squares method, a fit to the corresponding probability
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density function (p.d.f.) using maximum likelihood, and a non-parametric fit by kernel
density estimation, which makes no a priori assumption about the shape of the distribution,
other than the choice of the kernel function. We note, once again, that no post-processing is
needed to compute the Gibbs version of the configurational entropy. Our results are in line
with those reported by Asenjo et al. [34] for two-dimensional systems.

The number of mechanically stable states Ω required by the Edwards’ definition of
entropy is obtained subsequently to fitting the numerically obtained distribution of basin log-
volumes (dimensionless free energies) to a generalised Gaussian distribution and unbiasing it
appropriately, as described in Sec 2.6. We observe that the best-fit mean and squared scale
parameters of the generalised Gaussian for the distribution of dimensionless free energies, µ

and σ2 in Eq. (E.1) respectively, are also extensive, which although in line with what was
found in two dimensions, is not a priori obvious. Finally we find that the shape parameter, ζ

in Eq. (E.1), appears to depend only weakly on system size. The statistics are poor, but the
data are compatible with the assumption that ζ → 2 (Gaussian distribution) as N→∞. In 2D,
the same limiting distribution of ζ , but with a much stronger size dependence, was observed.

2.7.2 Entropy in the generalised Edwards ensemble

We next consider the situation where the configurational entropy is a function of both the
volume V and the stress tensor Σ̂ of the system. The number of packings with fixed V and Σ̂

is denoted by Ω(V, Σ̂).
In the generalised Edwards ensemble [61, 66, 118], we fix the variables conjugate to V

and Σ̂, viz. the compactivity X and the inverse angoricity tensor α̂ . The generalised ‘partition
function’ can then be written as [61]:

Z = ∑
ν

ω(Vν , Σ̂ν)e−Vν/X e−Tr(α̂Σ̂ν ), (2.18)

where Vν and Σ̂ν are the volume and the force-moment (stress) tensor for state ν . The weights
ω account for the protocol dependence of the probability to generate a state, and the sum
runs over all mechanically stable states ν .

We can rewrite this partition function in terms of the density of states:

Z = ∏
l,k>l

∫∫
dΣ̂

lk dV Ω(V, Σ̂)e−V/X e−Tr(α̂Σ̂). (2.19)

For a system under hydrostatic pressure, and in the absence of shear, we can write the force-
moment tensor as Σ̂ = ÎΓ, where Γ = PV = Tr(Σ̂)/3 is the internal Virial of the system. The
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Fig. 2.5 Top left, entropy as a function of the system size N computed, in order, according
to the Gibbs configurational entropy and the Edwards configurational entropy using a non-
parametric fit by kernel density estimation (KDE), a parametric fit to a generalised Gaussian
c.d.f. using a non-linear least squares method and a fit to the corresponding p.d.f. using
maximum likelihood (ML). Comparison of generalised Gaussian best-fit parameters for 2D
(see Ref. [34]) and 3D sphere packings: squared scale parameter σ2 (bottom left) and mean
log-volume µ (top right) scale linearly with system size N; distributions are more peaked for
2D packings. In 2D we observe much stronger dependence of the shape parameter ζ (bottom
right) as a function of system size than in 3D.

inverse angoricity tensor α̂ becomes a scalar α = ∂S/∂Γ [118]. This result allows to simplify
the notation significantly and at fixed volume, through the mean basin volume method, we
obtain the number of states integrated over all pressure states, Ω(V ) =

∫
dPΩ(V,P). We now

discuss how to generalise this procedure so that one can compute Ω(V,P), and therefore the
configurational entropy, in the context of the generalised Edwards ensemble.

Pressure to basin volume power-law relation

To compute Z(X ,α) directly, we would have to evaluate Ω(V,P) as a function of both P
and V . Whilst, with the tools that we have, this calculation is in principle possible, the
computational costs would be several orders of magnitude larger than the, already quite
substantial, costs of computing Ω(V ). This would suggest that the computation of Z(X ,α) is
not possible at present.
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Fig. 2.6 Top: basin log-volume versus log-pressure of mechanically stable states at fixed
volume for several system sizes. Best fit lines are in black. In the bottom left and right plots
we show slope and intercept for each of the best fit lines as a function of system size. Both
slope and intercept scale linearly with system size.

However, it turns out that we can still estimate the generalised configurational entropy
because, as we discuss below, we observe a surprisingly strong correlation between pressure
and basin volume.

From Fig. 2.6 we see that the basin volume for a given pressure state at fixed volume
is strongly correlated with the pressure P. As the figure suggests, the relation between
F ≡− ln(v) and Λ≡ ln(P) is approximately linear, and hence we can write the conditional
expectation of F given Λ, as

⟨F⟩B(Λ|N,φSS) =
N
κ

Λ+C(N), (2.20)

where ⟨F⟩B(φ ;Λ) represents the average over all basins at a given Λ, κ denotes the slope
of the linear fit, and C(N) its value at Λ = 0. As can be seen see from Fig. 2.6, Eq. (2.20)
is valid for any N. Under the assumption that the joint probability B(F,Λ) is a bivariate
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Fig. 2.7 Empirical cumulative distribution functions of the pressures for several system sizes.
Dashed lines in the corresponding colour are curves of best fit to a generalised log-normal
distribution. The curves are mostly indistinguishable. Inset: best fit parameters for the
generalised log-normal distribution as a function of system size. The mean µ and squared
scale parameter σ2 scale linearly with 1/N, while the shape parameter ζ is approximately
insensitive with respect to system size.

Gaussian, consistent with the elliptical distribution in Fig. 2.6, one can gain further insight
into the significance of the fit parameters κ and C, a full discussion is given in Appendix D.
This expression survives in 2D over a wide range of volume fractions and forms the basis of
much of Chapt. 3.

Gibbs configurational entropy

Using our approximate relation between pressure and basin volume, we can now rewrite
Eq. (2.20) in terms of the probabilities for each jammed state

ln(pi) =−
N
κ

Λi−C(N)− ln(VJ), (2.21)

which when substituted in the definition for the Gibbs entropy Eq. (2.13), gives the configu-
rational entropy at a given volume in terms of the biased mean log-pressure

SG =
N
κ
⟨Λ⟩B+C(N)+ ln(VJ)− ln(N!). (2.22)
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Fig. 2.8 Top: generalised Edwards entropy at fixed volume fraction for various system sizes.
The curves show a well defined maximum for all sizes, while their shape depends on the
specific parameters of the generalised log-normal that best fits the underlying distribution of
pressures. Bottom left: comparison between the Edwards entropy and the maximum value
attained by each curve: max[SB(V,P)] scales linearly with size and its value is progressively
closer to the marginal (total) Edwards entropy SB(V ), consistent with the fact that SB(V,P)
is a negative exponential function, and the area under the curve is dominated by the mode
for increasing system size. SB(V ) should constitute an upper limit to max[SB(V,P)]≤ SB(V )
and the two should be equivalent only in the thermodynamic limit. Bottom right: ensemble
average of the pressure computed as a function of inverse angoricity α and system size. The
curves, in the same colour as the top figure, do not diverge and the arrows indicates their
value at α = 0.
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The significance of this equation should be apparent: for a sufficiently over-compressed
packings of soft spheres at a given packing fraction, the Gibbs configurational entropy can
be approximately computed from sole knowledge of the average pressure, provided that κ is
known.

Generalised Edwards configurational entropy

To recover the number of states as a function of volume and stress we note that

Ω(V,P) = Ω(V )
∫ P+δP

P
U(x|V )dx, (2.23)

where U(P|V ) is the unbiased probability distribution function of stresses at some specified
volume. The directly measured distribution of pressures depends on the protocol with which
packings are generated.

We distinguish between the biased, B(P|N,φSS) (as sampled by the packing protocol),
and the unbiased, U(P|N,φSS), pressure distributions. Since the configurations were sampled
proportional to the volume of their basin of attraction, using Eq. (2.20) we can compute the
unbiased distribution analogously to Eq. (2.16) as

U(P|N,φSS) =Q(N,φSS)B(P|N,φSS)eC(N)PN/κ , (2.24)

where Q(N,φSS) = ⟨v⟩(N,φSS) is the normalisation constant.
Upon substitution of lnΩ(V ) = ln(VJ)− ln(⟨v⟩) and of Eq. (2.24) for U(x|V ), we write

an expression for the Edwards entropy as a function of volume and pressure

SB(V,P) = ln
(∫ P+δP

P
B(x|V )xN/κ dx

)

+ ln(VJ)+C(N)− ln(N!).
(2.25)

We fit the empirical cumulative distribution function (c.d.f.) of B(P) with the generalised
log-normal c.d.f. corresponding to Eq. (E.2) (see Fig. 2.7). We then numerically evaluate the
generalised Edwards entropy SB(V,P) at fixed volume, as shown in Fig. 2.8.

In the thermodynamic limit we find (derived next in Sec. 2.7.3)

sB(φSS) = 1+ c+
⟨Λ⟩B

κ
− ln(φSS)− fex(φHS)+O

(
(1/κ)2) , (2.26)

where c = C(N)/N. The O((1/κ)2) correction amounts to residual difference between the
Gibbs and Boltzmann entropy in the thermodynamic limit. This is due to the fact that 2.20
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survives the limit and the two quantities are identical only if 1/κ → 0. It will be shown in
Chapter 3 that for two-dimensional systems this condition is satisfied only at the unjamming
density, as φSS→ φ J

N→∞
.

In Fig. 2.8 we also show the predicted expectation value for the pressure obtained via the
ensemble average at arbitrary inverse angoricity α ,

⟨P⟩(ens)
α =

∫
∞

0
PB(P|V )PN/κe−αPV dP

∫
∞

0
B(P|V )PN/κe−αPV dP

. (2.27)

2.7.3 Thermodynamic limit of the generalised configurational entropy

From the fit to the empirical c.d.f. of B(P) with the generalised log-normal cumulative
distribution function, corresponding to Eq. (E.2), we obtain the set of parameters µ , σ , and
ζ . From the inset in Fig. 2.7, we observe that the mean µ and squared scale parameter
σ2 scale linearly with 1/N. In particular we note that σ2 seems to approach zero in the
thermodynamic limit, as expected. Furthermore we note that the shape parameter ζ seems to
be approximately independent of 1/N and to have a value of approximately 2 for all system
sizes, thus suggesting that the distributions of pressures are consistent with a log-normal
distribution.

Therefore, under the reasonable assumption (supported by the data) that the biased
distribution of pressures B(x|V ) is log-normal, we write the integrand in Eq. (2.25) as

I(x; µ,σ ,N)≡ B(x|V )xN/κ =

1

x
√

2πσ2
exp
(
−(ln(x)−µ)2

2σ2 +
N
κ

ln(x)
)
,

(2.28)

which is a unimodal distribution with mode xM = exp(Nσ2/κ +µ−σ2). The distribution is
such that

Ξ(µ,σ ,N) =
∫

∞

0
I(x; µ,σ ,N)dx = exp

[
σ2N2

2κ2 +
Nµ

κ

]
. (2.29)

Since σ2 = s/N and µ = µ∞ +m/N, where s and m are some constants, for large N we have

lim
N→∞

Ξ(µ,σ ,N)

N
=

µ∞

κ
+

s
2κ2 . (2.30)

Thus in the thermodynamic limit (N,V,1/σ2→ ∞) we obtain the expression for the Boltz-
mann configurational entropy per particle, Eq. (2.26).
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By replacing c = ⟨ f ⟩B−⟨Λ⟩B/κ from Eq. (D.4) into Eq. (2.26), we find

sB(φSS) = 1+ ⟨ f ⟩B− ln(φSS)− fex(φHS)+O
(
(1/κ)2) , (2.31)

hence the Gibbs and Boltzmann entropy per particles are identical in the thermodynamic
limit up to a factor sB−sG ∝ (1/κ)2 ≥ 0. In Chapter 3 we discuss how this bound is saturated
in two dimensional systems as the unjamming density is approached.

Comments on the choice of fitting distributions

We note that, since the unbiased distribution U(P|N,φSS) is peaked around high pressure
states that are under-sampled by our biased protocol (low pressure states have typically
larger basin volumes), the choice of fitting distribution for the observed (biased) distribution
B(P|N,φSS) and the quality of fit on the tails may have a significant effect on our numerical
predictions. The same considerations are valid for the observed distributions of basin negative
log-volumes B(F |N,φSS) discussed in Sec. 2.6.2. To address the first issue, we make use
of generalised Gaussian (Eq. E.1) and generalised log-normal (Eq. E.2) distributions: these
families of distributions allow either for heavier than normal tails (shape factor ζ < 2) or
lighter than normal tails (ζ > 2). The generalised Gaussian distribution allows to model a
continuum of symmetric distributions going from the Laplace distribution (ζ = 1) to the
normal distribution (ζ = 2) to the uniform distribution (ζ = ∞) [153, 154]. The issue of the
quality of fit on the tails can be essentially reduced to how accurate our estimate of the fitted
shape parameter ζ is. While we are somewhat limited by the available statistics, our results
show clear trends (in accordance with intuition) in the fitted parameters, see Fig. 2.5 and the
inset of Fig. 2.7, suggesting that the results are meaningful. Furthermore, extrapolation in
the thermodynamic limit indicates that the distributions are indeed Gaussian or log-normal
(ζN→∞ = 2). For the case of the distribution of F , in Fig. 2.5 we also show that different
fitting procedures for the generalised Gaussian model, or a non-parametric Kernel Density
Estimate (KDE) model that relaxes the assumption of a symmetric distribution (described
in Appendix E.3), yield results in good agreement. In the case of KDE with Gaussian
kernels, the details of the tails of the distributions will depend on the bandwidth – acting as a
smoothing parameter controlling the trade-off between bias and variance (which we optimize
by cross-validation) – and the way the samples are distributed (the KDE density is simply
the sum of the kernels located at the sample points, see Eq. E.3).
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2.8 Conclusions

The study of a statistical mechanics of granular materials has been complicated by the
impossibility of directly computing fundamental thermodynamic quantities. In this chapter
we have shown that configurational entropies of three-dimensional packings can, in fact, be
computed.

We have presented a method for the direct enumeration of the mechanically stable states
of systems consisting of up to 128 frictionless soft three-dimensional spheres and we have
shown that a definition of extensive entropy is possible, in line with the results for two
dimensional systems reported by Asenjo et al. [34]. Compared to with Asenjo et al. [34],
thanks to extensive algorithmic optimisation, our data benefit from more accurate basin
volume estimations and improved statistics overall. A direct comparison of the Gibbs entropy
in Fig. 2.1 (which does not rely on fits) clearly shows that our conclusions on the extensivity
of the entropy are better supported by the data. Our analysis of the distribution of basin
negative log-volumes B(F |N,φSS), summarised in Fig. 2.5, is also consistent with that
reported by Asenjo et al., except for the shape parameter ζ that seems to be roughly constant
(ζ ≈ 2) for all system sizes in 3D. Furthermore, as discussed in Sec. 2.7.1, we have tested the
reliability of our results for the Boltzmann entropy SB by fitting B(F |N,φSS) using different
fitting procedures and a non-parametric KDE model, finding excellent agreement between
the different methods, see Fig. 2.5. In addition to Asenjo et al. we have also extended the
discussion to the Edwards generalised (volume-stress) ensemble.

The study of 3D packings is computationally demanding: the computational time required
for each packing ranged between 10 and 104 cpu hours, depending on system size. The
present study therefore required substantial algorithmic optimisation.

We find that there is an approximately linear relationship between the logarithm of the
pressure of a mechanically stable configuration and the logarithm of the volume of its basin
of attraction.

The unexpected power law relationship between pressure and basin volume provides a
way to extend our approach to the generalised Edwards ensemble. We can analytically unbias
the observed distribution of pressures and compute the entropy as a function of pressure
at a given volume. Hence we have obtained consistent expressions for the entropy in the
thermodynamic limit. Knowledge of this distribution enables the first direct computation of
angoricity.

Tackling the study of granular materials from the energy landscapes point of view is
rather advantageous, although this does not come without burdens. This sort of approach
is limited to soft frictionless particles, and we expect it to be reliable only at φ > φ J when
the system is at least slightly over-compressed. Other theoretical approaches are useful in
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more limiting situations, see for instance the discussion of the stress ensemble in the limit
φ → φ J by Henkes and Chakraborty [66, 118] and the work on the force network ensemble
for systems of almost hard grains [120–122].



Chapter 3

Are some packings more equal than others?
A direct test of the Edwards conjecture

In the late 1980s, Sir Sam Edwards proposed a possible statistical-mechanical
framework to describe the properties of disordered granular materials. A key
assumption underlying the theory was that all jammed packings are equally likely.
In the intervening years it has never been possible to test this bold hypothesis
directly. Here we present simulations that provide direct evidence that at the
unjamming point, all packings of soft repulsive particles are equally likely, even
though generically, jammed packings are not. This is precisely the point at which
experimental realisations of jammed granular systems are typically observed.
Our results therefore support Edwards’ original conjecture. We also present
evidence that at unjamming the configurational entropy of the system is maximal.

— This chapter is based on Ref. [155]: Stefano Martiniani, K. Julian Schrenk,
Kabir Ramola, Bulbul Chakraborty and Daan Frenkel, arXiv:1610.06328

3.1 Introduction

In science, most breakthroughs cannot be derived from known physical laws: they are
based on inspired conjectures [156]. Comparison with experiment of the predictions based
on such a hypothesis allows us to eliminate conjectures that are clearly wrong. However,
there is a distinction between testing the consequences of a conjecture and testing the
conjecture itself. A case in point is Edwards’ theory of granular media. In the late 1980s,
Edwards and Oakeshott [57] proposed that many of the physical properties of granular
materials (‘powders’) could be predicted using a theoretical framework that was based on
the assumption that all distinct packings of such a material are equally likely to be observed.
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The logarithm of the number of such packings was postulated to play the same role as
entropy does in Gibbs’ statistical-mechanical description of the thermodynamic properties of
equilibrium systems. However, statistical-mechanical entropy and granular entropy are very
different objects. Until now, the validity of Edwards’ hypothesis could not be tested directly –
mainly because the number of packings involved is so large that direct enumeration is utterly
infeasible – and, as a consequence, the debate about the Edwards hypothesis has focused on
its consequences, rather than on its assumptions. Here we present results that show that now,
at last, it is possible to test Edwards’ hypothesis directly by numerical simulation. Somewhat
to our own surprise, we find that the hypothesis appears to be correct precisely at the point
where a powder is just at the (un)jamming threshold. However, at higher densities, the
hypothesis fails. At the unjamming transition, the configurational entropy of jammed states
appears to be at a maximum.

The concept of ‘ensembles’ plays a key role in equilibrium statistical mechanics, as
developed by J. Willard Gibbs, well over a century ago [91]. The crucial assumption that
Gibbs made in order to arrive at a tractable theoretical framework to describe the equilibrium
properties of gases, liquid and solids was that, at a fixed total energy, every state of the
system is equally likely to be observed. The distinction between, say, a liquid at thermal
equilibrium and a granular material is that in a liquid, atoms undergo thermal motion whereas
in a granular medium (in the absence of outside perturbations) the system is trapped in one
of many (very many) local potential energy minima. Gibbsian statistical mechanics cannot
be used to describe such a system. The great insight of Edwards was to propose that the
collection of all stable packings of a fixed number of particles in a fixed volume might also
play the role of an ‘ensemble’ and that a statistical-mechanics like formalism would result if
one assumed that all such packings were equally likely to be observed, once the system had
settled into a mechanically stable ‘jammed’ state. The nature of this ensemble has been the
focus of many studies [57, 61, 63, 157].

Jamming is ubiquitous and occurs in materials of practical importance, such as foams,
colloids and grains when they solidify in the absence of thermal fluctuations. Decompressing
such a solid to the point where it can no longer achieve mechanical equilibrium leads to
unjamming. Studies of the unjamming transition in systems of particles interacting via soft,
repulsive potentials have shown that this transition is characterized by power-law scaling of
many physical properties [158–163]. However, both the exact nature of the ensemble of
jammed states and the unjamming transition remain unclear.

We present a direct test of the Edwards conjecture, using a numerical scheme for comput-
ing basin volumes of distinct jammed states (energy minima) of N polydisperse, frictionless
disks held at a constant packing fraction φ . Uniquely, our numerical scheme allows us to
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Fig. 3.1 (a) Snapshot of a jammed packing of disks with a hard core (dark shaded regions)
plus soft repulsive corona (light shaded regions). (b)-(c) Illustration of configurational space
for jammed packings. The dashed regions are inaccessible due to hard core overlaps. Single
coloured regions with contour lines represent the basins of attraction of distinct minima.
The dark blue region with solid dots indicates the coexisting unjammed fluid region and
hypothetical marginally stable packings, respectively. The volume occupied by the fluid
Vunj is significant only for finite size systems at or near unjamming. When φ ≫ φ∗ (b) the
distribution of basin volumes is broad but as φ → φ∗ (c) the distribution of basin volumes
approaches a delta function satisfying Edwards’ hypothesis.

compute Ω, the number of distinct jammed states, and the individual probabilities pi∈{1,...,Ω}
of each observed packing to occur. Fig. 3.1a shows a snapshot of a section of the system,
consisting of particles with a hard core and a soft shell. Details of the system were discussed
in Sec. 2.3.2.

3.2 Packing preparation protocol

We obtain jammed packings by equilibrating a hard disk fluid and inflating the particles
instantaneously to obtain the desired soft-disk volume fractions (φ ), followed by energy
minimization using FIRE [144], as described in Sec 2.3.1. The particle radii are sampled
from a truncated Gaussian distribution with mean µ = 1 and standard deviation σHS = 0.1. In
our simulations, we considered all mechanically stable packings, irrespective of the number
of ‘rattlers’. To guarantee mechanical stability we required that the total number of contacts
is sufficient for the bulk modulus to be strictly positive, Nmin = d(Nnr−1)+1 [164], where
Nnr is the number of non-rattlers and d the dimensionality of the system.

The minimization procedure finds individual stable packings with a probability pi propor-
tional to the volume vi of their basin of attraction. Averages computed using this procedure,
represented by ⟨. . .⟩B, would then lead to a bias originating from the different vi’s. The
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numerical methods introduced in Refs [32, 34–36] and discussed in Chapt. 2, 4, 5 have
enabled the direct computation of vi, and therefore, an unbiased characterization of the phase
space.

3.3 Results: Equiprobability of states

We report a detailed analysis of the distribution of basin volumes vi for a system of N = 64
disks. We compute vi using a thermodynamic integration scheme [32, 34–36] described
in Sec. 2.4 and summarised in Sec. 2.5, and compute the average basin volume ⟨v⟩(φ).
The number of jammed states is, explicitly, Ω(φ) = VJ(φ)/⟨v⟩(φ), where VJ(φ) is the total
available phase space volume at a given φ , see Appendix C for details of its derivations.
Furthermore, we perform finite size scaling analysis to locate the (un)jamming density and
to establish a relation with Edwards’ hypothesis.

3.3.1 Summary of calculations

For the basin volume calculations we consider systems of N = 64 disks sampled at a range
of 8 volume fractions 0.828 ≤ φ ≤ 0.86 and for each φ we measure the basin volume for
about 365 < M < 770 samples.

For the finite size scaling analysis of the relative pressure fluctuations we study system
sizes N = 32,48,64,80,96,128 for 48 volume fractions in the range 0.81≤ φ ≤ 0.87. For
each system size we generate up to 105 hard disk fluid configurations and compute the pres-
sure for between approximately 103 and 104 jammed packings (depending on the probability
of obtaining a jammed packing at each volume fraction).

Simulations were performed using the open source libraries PELE [140] and MCPELE
[137]. While presenting data from our computations, we express pressure and volume in
reduced units as P/P∗ and v/v∗ respectively. The unit of volume is given by v∗ ≡ π⟨r2

HS⟩,
where ⟨r2

HS⟩ is the mean-squared hard sphere radius. The unit of pressure is then P∗ ≡ ε/v∗,
where ε is the stiffness of the soft-sphere potential, defined in Eq. (2.5). The pressure is
computed as P = Tr(Σ̂)/2Vbox where Σ̂ is the Virial stress tensor and Vbox the volume of the
enclosing box.

Errors were computed analytically where possible and propagated using the ‘uncertainties’
Python package [165]. Alternatively, intervals of confidence were computed by bootstrap for
the covariance estimation [166] and by BCa bootstrap otherwise using the ‘scikit-bootstrap’
Python package [167, 168]
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Fig. 3.2 Observed distribution of the basin negative log-volume F (a) and log-pressure Λ (b)
for jammed packings of N = 64 HS-WCA polydisperse disks at various volume fractions
0.828≤ φ ≤ 0.86. Solid lines are Kernel Density Estimates and dashed lines are generalised
Gaussian fits.

We remove outliers from the log-volume and pressure distributions following the distance-
based outlier removal method introduced by Knorr and Ng [152] described in Appendix E.4,
with D = 4σ , R = 0.5.

Distributions of basin negative log-volumes (F =− lnvbasin) were fitted using either a
generalised Gaussian distribution (Eq. E.1) or non-parametric Kernel Density Estimates
(described in Appendix E.3). A discussion of the choice of fitting distributions has been
given in Sec. 2.7.3. Note that we also prefer KDE to histograms to circumvent the influence
of binning on the visualisation and interpretation of the data1.

3.3.2 Distributions of basin volumes and pressures

To characterize the distribution of basin volumes, we analyse the statistics of vi along with
the pressure Pi of each packing. It is convenient to study Fi ≡ − lnvi as a function of
Λi ≡ lnPi. Before fitting the marginal distributions, we perform an additional step of outlier
detection based on an elliptic (Gaussian) envelope criterion described in Appendix E.5.1. The
procedure is strictly unsupervised and allows us to achieve robust fits despite the small sample
sizes. In Fig. 3.2 we show the biased distributions B(F) and B(Λ) of the basin log-volumes
and log-pressure, which are the marginal distributions of the joint distribution B(F,Λ) shown
in Fig. 3.4. We fit the marginal distributions using both a (parametric) generalised Gaussian

1As far as visualisation is concerned, the choice of kernel will also have an effect but, if properly cross-
validated, less serious than the arbitrary choice of binning.
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Fig. 3.3 Moments of the joint distribution B( f ,Λ) for jammed packings of N = 64 HS-
WCA polydisperse disks at various volume fractions 0.828 ≤ φ ≤ 0.86. Elements of the
mean µµµ = (µ f ,µΛ) are shown in (a) and (b) respectively. Elements of the covariance
matrix σ̂ = ((σ2

f ,σ
2
f Λ
),(σ2

f Λ
,σ2

Λ
)) are shown in (c)-(e). The linear correlation coefficient

ρ f Λ = σ2
f Λ
/(σ f σΛ) is shown in (f). All values are computed by the MCD estimator with

0.99 support fraction over 1000 bootstrap samples. Error bars are standard errors computed
by bootstrap. Dashed lines are second order polynomial fits and dotted lines are sigmoid fits
(Eq. (E.4)). Curves of best fit are meant as guide to the eye.
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model [154] and a (non-parametric) kernel density estimate (KDE), see Appendix E for a
description. We compute the Boltzmann entropy SB by unbiasing and integrating the resulting
fits for B(F) as described in Sec. 2.6.2.

In has been shown [169] that in the limit N→ ∞ the shape parameter for the generalised
Gaussian fit to B(F) approaches that of a standard Gaussian distribution ζ = 2, consistently
with our findings for three-dimensional packings, see Fig. 2.5. Since we also have that
σ2

F ∼ N and µF ∼ N, we can write

e−(F−µF )
2/(2σ2) ∼ e−N( f−µ f )

2 → δ (µ f ) as N→ ∞, (3.1)

where δ is the Dirac delta function and f = F/N. The distribution of basin volumes thus
becomes infinitely narrow in the thermodynamic limit. However, this is not sufficient for
the Edwards conjecture to be correct, in fact we also require that the basin volumes are
uncorrelated with respect to any structural observables in this limit, consistently with what
has been found in Sec 2.7.3. In what follows we show that this occurs only as φ → φ∗.

In Fig. 3.3 we plot the moments ofB( f ,Λ), namely the elements of the mean µµµ =(µ f ,µΛ)

and the elements of the covariance matrix σ̂ = ((σ2
f ,σ

2
f Λ
),(σ2

f Λ
,σ2

Λ
)), as well as the linear

correlation coefficient ρ f Λ = σ2
f Λ
/(σ f σΛ). Mean and covariance estimates of B( f ,Λ) are

computed using a robust covariance estimator described in Appendix E.5 with support fraction
h/nsamples = 0.99. We use these robust estimates of the location and of the covariance matrix
(computed over 1000 bootstrap samples [166]) to fit our observations by linear minimum
mean square error (MMSE) [170], see Fig.3.4, and to compute the Gibbs entropy SG.

3.3.3 Convergence of Gibbs and Boltzmann entropy

A convenient way to check equiprobability is to compare the Boltzmann entropy SB =

lnΩ− lnN!, which counts all packings with the same weight, and the Gibbs entropy SG =

−∑
Ω
i pi ln pi− lnN!, see Sec. 2.6 for a detailed discussion. The Gibbs entropy satisfies

SG ≤ SB, saturating the bound when all pi are equal, namely pi∈{1,...,Ω} = 1/Ω. As shown in
Fig. 3.4a, SG approaches SB from below as φ → φ

∗(S)
N=64 ≈ 0.823. Fig. 3.1b-c schematically

illustrates the evolution of the basin volumes as the packing fraction is reduced.

3.3.4 Decoupling of basin volume and pressure

As shown in Fig. 3.4b, we observe a strong correlation between Fi and Λi which we quantify
by fitting the data to a bivariate Gaussian distribution. The conditional expectation of F
given Λ then yields a linear relationship (denoted by solid lines in Fig. 3.4b) such that
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Fig. 3.4 (a) Gibbs entropy SG and Boltzmann entropy SB as a function of volume fraction.
SB is computed both parametrically by fitting B( f ) with a generalised Gaussian function
(‘Gauss’) and non-parametrically by computing a Kernel Density Estimate (‘KDE’) as in
Ref.[35]. Dashed curves are a second order polynomial fit. (b) Scatter plot of the negative
log-probability of observing a packing, − ln pi = Fi + lnVJ(φ), where VJ is the accessible
fraction of phase space (see Appendix C) as a function of log-pressure, Λ. Black solid lines
are lines of best fit computed by linear minimum mean square error using a robust covariance
estimator and bootstrap (see Appendix E.5). (c) Slopes λ (φ) and (d) intercepts c(φ) of linear
fits for Eq. (3.2). Solid lines are lines of best fit and error bars refer to the standard error
computed by bootstrap.
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λ S(Gauss)
B S(KDE)

B
φ∗N=64 0.824±0.070 0.823 0.823

⟨z⟩sig(φ
∗
N=64) 4.050±0.24 4.048 4.048

Table 3.1 Predicted values of φ∗N=64 obtained from the linear extrapolation of λ → 0 and
from the point of intersection of the Gibbs entropy SG with the Boltzmann entropy SB,
computed both parametrically by fitting B( f ) with a generalised Gaussian function (‘Gauss’)
and non-parametrically by computing a Kernel Density Estimate (‘KDE’) of the distribution.
The corresponding average contact number has been computed using a sigmoid fit to the
data.

⟨F⟩B(φ ;Λ) ∝ λ (φ)Λ2, where ⟨F⟩B(φ ;Λ) represents the average over all basins at a given Λ.
In Chapt. 2 we have shows that this relationship also exists for three-dimensional packings
and that it is preserved in the thermodynamic limit. Defining f = F/N, we have (see
Appendix D for a derivation):

⟨ f ⟩B(φ ;Λ) =λ (φ)Λ+ c(φ)

=λ (φ)∆Λ+ ⟨ f ⟩B(φ) ,
(3.2)

where ∆Λ = Λ− ⟨Λ⟩B(φ). For Edwards’ hypothesis to be valid, we require that in the
thermodynamic limit (i) the distribution of volumes approaches a Dirac delta, which follows
immediately from the fact that the variance σ2

f ∼ 1/N [34], see Sec. 3.3.2 for a derivation,
and (ii) Fi needs to be independent of Λi, as well as of all other structural observables, and
therefore λ (φ) must necessarily vanish. As can be seen from Fig. 3.4c-d, within the range
of volume fractions studied, λ (φ) decreases but saturates to a minimum as φ → φ

∗(λ )
N=64. We

argue below that the saturation is a finite size effect. An extrapolation using the linear regime
in Fig. 3.4c indicates that λ → 0 at packing fraction φ

∗(λ )
N=64 = 0.824± 0.070, remarkably

close to where our extrapolation yields SG = SB (extrapolated densities are summarised in
Table 3.1). The analysis of basin volumes, therefore, strongly suggests that equiprobability is
approached only at a characteristic packing fraction and that the vanishing of λ (φ) can be
used to estimate the point of equiprobability.

We next show that λ (φ) does indeed tend to zero in the thermodynamic limit. We use the
fluctuations σ2

f , σ2
Λ

, and the covariance σ2
f Λ

, obtained from the elements of the covariance
matrix σ̂ = ((σ2

f ,σ
2
f Λ
),(σ2

f Λ
,σ2

Λ
)) of the joint distribution of f and Λ to define λ and c (see

2Note we relabelled λ ≡ 1/κ from Sec. 2.7.2
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Fig. 3.5 (a) Log-transformed observed (biased) distribution of pressures for jammed packings
of N = 64 HS-WCA polydisperse disks, centred around the mean. The variance grows
for decreasing volume fractions and becomes more skewed towards low pressures. The
overall Gaussian shape is consistent with a log-normal distribution of pressures. Curves
are kernel density estimates with Gaussian kernels, see Appendix E for a description. (b)
χP ≡ Nσ2(P/⟨P⟩B) and (inset) χΛ ≡ Nσ2

Λ
, plotted as a function of volume fraction φ . For

φ ≫ φ∗N , χP approaches a constant value indicating the absence of correlations far from the
transition. Error bars, computed by BCa bootstrap [167], refer to 1σ confidence intervals.
Solid lines are generalised sigmoid fits defined as in Eq. (E.4). We only show values of φ

where the probability of finding a jammed packing is at least 1%, so that the observables are
computed over sufficiently large samples.

Appendix D) as:

λ (φ)≡
σ2

f Λ
(φ)

σ2
Λ
(φ)

,

c(φ)≡⟨ f ⟩B(φ)−
σ2

f Λ
(φ)

σ2
Λ
(φ)
⟨Λ⟩B(φ).

(3.3)

From Fig. 3.4b we observe that the decrease of λ is driven by σ2
Λ

increasing to a maximum,
while σ2

f and σ2
f Λ

decrease, see Fig. 3.3. We expect the main features of these distributions
to be preserved as the system size N is increased [35], which suggests that for larger N,
where basin volume calculations are still intractable for multiple densities, the maximum in
σ2

Λ
can be used to identify φ∗N . We have directly measured χΛ = Nσ2

Λ
using our sampling

scheme – that samples packings with probability proportional to the volume of their basin of
attraction – for systems of up to N = 128 disks (see inset of Fig. 3.5b) and finite size scaling
indicates that χΛ diverges as φ → φ∗N→∞

= 0.841(3), see Sec. 3.3.6. The saturation of λ to
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a minimum as φ → φ∗N , for small N, is determined by the fact that χΛ only diverges in the
thermodynamic limit, a detailed discussion is given in Sec. 3.3.7.

Returning to the N = 64 case that we have analysed using the basin volume statistics, we
find that our estimate φ∗N=64 = 0.824(70) where SG = SB and λ → 0, falls precisely in this
region where χΛ saturates to its maximum value. In addition, the average number of contacts
⟨z⟩B(φ∗N=64) = 4.05±0.24 is close to the isostatic value z(iso)

N=64 ≡ 2d−2/64≈ 3.97 [161].

3.3.5 Correlations with other structural parameters

We analyse the correlation of the basin negative log-volume with a number of structural
parameters other than the pressure, that we have just discussed. For all observables Y we
assume a linear correlation defined analogously to Eq. (3.2), namely

⟨ f ⟩B(φ ;Y ) = λY (φ) lnY + cY (φ). (3.4)

We perform the analysis for the individual elements of the stress tensor Σ̂i j, the average
contact number z and the Q6 bond-orientational order parameter [171]. Scatter plots with
bootstrapped linear MMSE fits are shown in Fig. 3.6 (except for the diagonal elements of Σ̂

that are essentially identical to Fig. 3.4b), and the fitted parameters are plotted as a function
of volume fraction in Fig. 3.7. The results are qualitatively similar to those obtained for the
pressure in that λY is decreasing towards 0 as φ → φ∗, indicating that the basin volumes
decorrelate from Y in this limit, this being a necessary condition for the equiprobability of
jammed states.

In Fig. 3.6b, we observe that λQ6 becomes precisely zero at the lowest φ , while for larger
volume fractions λQ6 < 0, implying that larger basins correspond to more ordered structures.
At the same time we note from Figs. 3.6c-d that larger volumes correspond on average to
lower average contact numbers z, and that z and Q6 are (therefore) negatively correlated for
disordered packings.

3.3.6 Finite size scaling analysis

Interestingly, we find evidence that in the thermodynamic limit, the point of equiprobability
φ∗N→∞

, coincides with the point at which the system unjams, φ J
N→∞

. We use two charac-
teristics of the unjamming transition to locate φ J

N→∞
(i) the probability of finding jammed

packings, pJ , goes to zero (see Fig 3.8a) and (ii) the average pressure of the packings goes to
zero, and therefore ⟨Λ⟩ → −∞ (see Fig 3.9a).
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Fig. 3.6 Scatter plots of the negative log-probability of observing a packing, − ln pi =
Fi + lnVJ(φ), where VJ is the accessible fraction of phase space, as a function of Σ̂01 (a), the
Q6 bond-orientational order parameter (b) and the average contact number z (c). The scatter
plot in (d) shows the Q6 bond-orientational order parameter as a function of the average
contact number z. Black solid lines are lines of best fit computed by bootstrapped linear
MMSE using a robust covariance estimator.

A finite size scaling collapse for pJLβ/ν vs. L1/ν
(
φ/φ J

N→∞
−1
)
, shown in the inset

of Fig. 3.8a, yields critical exponents ν ≈ 1, β = 0 and critical volume fraction φ
J(pJ )
N→∞

=

0.844(2), in agreement with Vagberg et al. [172]. O’Hern et al. [123, 173] produced similar
estimates of the correlation length exponent and of the critical volume fraction by fitting the
function φ 0

N−φ J
N→∞

= δ0L−1/ν , where φ 0
N corresponds the position of the peaks for ∂φ pJ ,

shown in Fig. 3.8b. For a system of bidisperse disks O’Hern et al. found ν = 0.71(8) and
φ J

N→∞
≈ 0.842. A similar analysis of our data produces results in agreement with O’Hern et

al., namely ν = 0.6(3) and φ J
N→∞

≈ 0.840(3), but less accurate due to the smaller system
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Fig. 3.7 Slopes λY (a) and intercepts cY (b) of Eq. (3.4) for the individual components of the
stress tensor Σ̂, the Q6 bond-orientational order parameter, and the average contact number
z. Estimates were obtained by bootstrapped linear MMSE fits using a robust covariance
estimator and error bars refers to the standard error computed by bootstrap. Solid lines are
guides to the eye.

sizes and the smaller sample size that we consider. Vagberg et al. [172] have shown that
finite size corrections to scaling are important, such that when taken into account ν ≈ 1,
in agreement with the scaling collapse for ν = 1 shown in the inset of Fig. 3.8a. A finite
size scaling collapse for ⟨Λ⟩BLξ/ν vs. L1/ν

(
φ/φ J

N→∞
−1
)
, shown in Fig. 3.9b, yields

ν = 0.50(5), ξ = 0.62(3) and critical volume fraction φ
J(Λ)
N→∞

= 0.841(3).
We then analyse the relative pressure fluctuations χP = Nσ2(P/⟨P⟩B) and the log-

pressure fluctuations χΛ = Nσ2
Λ

. A scaling collapse for different system sizes of χPL−γ/ν

vs. L1/ν (φ/φ∗N→∞
−1) with L = N1/d , shown in Fig. 3.10a, yields ν = 0.5(3), γ = 0.47(5)

and φ
∗(P)
N→∞

= 0.841(3). An analogous scaling collapse of χΛL−γ/ν vs. L1/ν (φ/φ∗N→∞
−1),

shown in Fig. 3.10b, yields ν = 0.5(3), γ = 0.89(5) and φ
∗(Λ)
N→∞

= 0.841(3).
O’Hern et al. [123] measured the exponent with which the pressure vanishes for each

individual packing as a function of P ∼ (φ − φc)
ψ , where φc is the unjamming volume

fraction found by decompressing quasi-statically each individual configuration. They find
that ψ = α − 1, where α is the exponent of a short-range inverse power potential. Near
unjamming we find α = 2, as shown in Sec. 2.3.2, and therefore we expect ψ = 1. Our
finite size scaling analysis is performed with respect to a unique φ J (for all configurations)
and we have not performed a systematic study for different potentials to establish a precise
relationships between α and β or γ , which seem to fall approximately in the range 0.5 to
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Fig. 3.8 (a) Probability of obtaining a jammed packing pJ by our preparation protocol for
N = 32 to 128 HS-WCA polydisperse disks as a function of volume fraction. Inset: Scaling
collapse for pJLβ/ν vs. L1/ν

(
φ/φ J

N→∞
−1
)
, with L = N1/d , yields critical exponents ν ≈ 1,

β = 0 and critical volume fraction φ
J(pJ )
N→∞

= 0.844(2). Circles are observed data and solid
lines correspond to sigmoid fits, Eq. (E.4). (b) Derivative of the sigmoid fits for pJ for
different numbers of disks.

1. A broader investigation, which goes beyond the scope of this work, will be necessary to
establish a precise relationship.

Together these results lead us to conclude that the point of equiprobability φ∗N→∞
coincides

with the unjamming point φ J
N→∞

, to within numerical error and up to corrections to finite size
scaling. Note that the precise numerical value of ν varies through the literature and has been
shown to depend on the quantity being observed, and also crucially on finite size corrections
to scaling [172]. In this work we have not attempted to establish ν definitely, nor elucidate
its origin with respect to the diverging correlation length(s) that might be involved.

Our simulations therefore lead to the surprising conclusion that the Edwards conjecture
appears to hold precisely at the (un)jamming transition.

Diverging relative pressure fluctuations

Why is χΛ related to the unjamming transition? As the particles interact via purely repulsive
potentials, P is strictly positive, which implies that the fluctuations of P have a floor and go
to zero at unjamming. The relative fluctuations χP ≡ Nσ2 (P/⟨P⟩B), can be non-zero, and a
diverging χP would then imply a diverging χΛ. Because of the bounded nature of P [118,
174, 175], however, χP can only diverge at the unjamming transition where ⟨P⟩B→ 0, see
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Fig. 3.9 (a) Average log-pressure ⟨Λ⟩B for N HS-WCA polydisperse disks. (b) Scaling col-
lapse for ⟨Λ⟩BLξ/ν vs. L1/ν

(
φ/φ J

N→∞
−1
)
, with L = N1/d . The estimated critical exponents

are ν = 0.50(5) and ξ = 0.62(3), and the critical volume fraction φ
J(Λ)
N→∞

= 0.841(3). Inset:
A logarithmic plot of the same data. Circles are observed data and solid lines are sigmoid fits,
Eq. (E.4). Error bars, computed by BCa bootstrap [167], refer to 1σ confidence intervals.
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Fig. 3.10 (a) Data collapse from finite size scaling analysis of the variance of the relative
pressures. The plot shows χPL−γ/ν vs. L1/ν

(
φ/φ J

N→∞
−1
)
, with L = N1/d . The estimated

critical exponents are ν = 0.5(3) and γ = 0.47(5), and the critical volume fraction is φ
∗(P)
N→∞

=

0.841(3). (b) Scaling collapse of the variance of the log-pressures. The plot shows χΛL−γ/ν

vs. L1/ν (φ/φ∗N→∞
−1). The estimated critical exponents are ν = 0.5(3) and γ = 0.89(5),

and the critical volume fraction is φ
∗(Λ)
N→∞

= 0.841(3). Error bars, computed by BCa bootstrap,
refer to 1σ confidence intervals.
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Appendix F for a justification. We find that χP does diverge (Figs. 3.5a, 3.10) and finite size
scaling yields φ

∗(P)
N→∞

= 0.841(3).

3.3.7 Scaling behaviour

Scaling at φ ≫ φ∗

First we show that away from a critical point, the relative pressure fluctuations scale as
1/L2, where L =

√
N and N is the number of particles. The internal Virial is defined by

P = ∑i=1,N pi, where pi is the particle level “pressure” given by pi = ∑ j ∑α=1,2 rrrα
i, j fff α

i, j where
rrrα

i, j and fff α
i, j are the contact vectors and contact forces, respectively. The variance of P/⟨P⟩ is

σ
2(P/⟨P⟩) = ⟨P

2⟩−⟨P⟩2
⟨P⟩2 =

∑
N
i=1 σ2(pi)+∑i ̸= j cov(pi, p j)

(
∑

N
i=1⟨pi⟩

)2 . (3.5)

When away from a critical point we expect ∑i̸= j cov(pi, p j) to scale subextensively, and the
variance of relative pressure fluctuations to be

σ
2(P/⟨P⟩) = ∑

N
i=1 σ2(pi)(

∑
N
i=1⟨pi⟩

)2 ∼
1
N

(3.6)

hence the relative pressure fluctuations away from the critical point will scale as 1/N = 1/L2,
and

σ
2(Λ)≈ σ

2(P/⟨P⟩)∼ 1/L2, (3.7)

as can be verified in Fig. 3.5.
Second, we analyse the covariance of the basin negative log-volume per particle (F/N =

− ln(vbasin)/N) and the relative pressure fluctuations, cov(F/N,P/⟨P⟩). Similarly to the
internal Virial, we define the particle level basin negative log-volume fi, such that F =

∑i=1,N fi. Then we have

cov(F/N,P/⟨P⟩) = ⟨FP⟩−⟨F⟩⟨P⟩
N⟨P⟩ =

∑
N
i=1 cov( fi, pi)+∑i ̸= j cov( fi, p j)

N ∑
N
i=1⟨pi⟩

. (3.8)

From the power-law relation between F and Λ we know that away from the critical point
cov( fi, pi)> 0 and we expect ∑i̸= j cov( fi, p j) to scale subextensively in this region, hence

cov(F/N,P/⟨P⟩) = ∑
N
i=1 cov( fi, pi)

N ∑
N
i=1⟨pi⟩

∼ 1
N
, (3.9)
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therefore
cov( f ,Λ)≈ cov( f ,P/⟨P⟩)∼ 1/L2, (3.10)

where f = F/N. We can thus conclude that the slope of the power-law relation is

λφ≫φ∗ =
σ2( f ,Λ)
σ2(Λ)

∼O(1), (3.11)

In other words, λ is independent of system size, a fact that has been verified numerically in
Sec. 2.7.2, see Fig. 2.6.

Scaling as φ → φ∗

Near the critical point, as φ → φ∗, the variance of Λ follows the scaling form

σ
2(Λ)∼ Lγ/ν−2, (3.12)

with γ/ν ≈ 1 as found by finite size scaling, shown in Fig. 3.10. While we do not have a
finite size scaling collapse for the covariance σ2( f ,Λ), due to the high computational cost
of performing the basin volume calculations for multiple system sizes, we do observe that
for N = 64 the covariance decreases with respect to the “background” 1/L2 fluctuations as
φ → φ∗, see Fig. 3.3e. Thus, we do not expect L2σ2( f ,Λ) to diverge but rather that

σ
2( f ,Λ)≲ L−2, (3.13)

Hence in the limit φ → φ∗ we find that the slope of the power-law relation becomes

λφ→φ∗ =
σ2( f ,Λ)
σ2(Λ)

= 0. (3.14)

Relation between scaling exponents

Starting from Eq. (3.2), we use the fact that σ2(aX±bY )= a2σ2(X)+b2σ2(Y )±2ab cov(X ,Y )
to compute the variance of f = F/N to find

σ
2
f = λ

2
σ

2
Λ = (σ2

f Λ)
2/σ

2
Λ (3.15)

By rearranging this expressions we find that

(σ2
f Λ)

2/σ
2
f = σ

2
Λ ∼

{
L−2 for φ ≫ φ∗

L−ζ for φ → φ∗
(3.16)
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where we have defined ζ ≡ 2− γ/ν ≈ 1 as in Eq. (3.12) and as found by finite size scaling,
shown in Fig. 3.10. For φ → φ∗, by assuming scalings σ2

f Λ
∼ L−η and σ2

f ∼ L−ϑ , we find
the following relation between scaling exponents

2η−ϑ = ζ (3.17)

3.3.8 Equiprobability in the generalized Edwards ensemble

Finally, we note that the states in the generalized Edwards ensemble [61, 65, 66, 118] charac-
terized by φ and P have basin volumes that are similar, if not identical, over the full range of
φ that we have explored (see scatter plot in Fig. 3.4b), indicating that equiprobability in the
stress-volume ensemble [61, 65] is a more robust formulation of the Edwards hypothesis.
This observation is consistent with recent experiments [116].

3.4 Conclusions

We have reported numerical evidence supporting the existence of a flat measure at unjamming
for 2D soft repulsive sphere systems. Although, the equiprobability of jammed states at a
given packing fraction was posited by Edwards for jammed packings of hard particles, our
analysis shows that for soft particles, the Edwards hypothesis is valid only for the marginally
jammed states at φ∗N→∞

= φ J
N→∞

, where the jamming probability vanishes, the entropy is
maximized, and relative pressure fluctuations diverge. We have shown not only that there
exist a practical ‘Edwardsian’ packing generation protocol, capable of sampling jammed
states equiprobably, but we have uncovered an unexpected property of the energy landscape
for this class of systems. At this stage we cannot establish whether the same considerations
are valid in 3D, although the already proven validity of Eq. (3.2) in 3D would suggest so
[35], see Sec. 2.7.2. The exact value of the entropy at unjamming, whether finite or not,
also needs to be elucidated. The implications for ‘soft’ structural glasses is apparent: at
φ J the uniform size of the basins implies that the system, when thermalised, has the same
probability of visiting all of its basins of attraction, hence there are no preferred inherent
structures. This could be a signature of the hard-sphere transition occurring at the same point
[39]. Our approach can therefore be extended to spin-glasses and related problems, and it
would be clearly very exciting to explore the analogies and differences between ‘jamming’
in various systems for which the configuration space can break up into many distinct basins.



Chapter 4

Structural analysis of high-dimensional basins of
attraction

We propose an efficient Monte Carlo method for the computation of the volumes
of high-dimensional bodies with arbitrary shape. We start with a region of known
volume within the interior of the manifold and then use the multi-state Bennett
acceptance-ratio method to compute the dimensionless free-energy difference
between a series of equilibrium simulations performed within this object. The
method produces results that are in excellent agreement with thermodynamic
integration, as well as a direct estimate of the associated statistical uncertainties.
The histogram method also allows us to directly obtain an estimate of the
interior radial probability density profile, thus yielding useful insight into the
structural properties of such a high dimensional body. We illustrate the method
by analysing the effect of structural disorder on the basins of attraction of
mechanically stable packings of soft repulsive spheres.

— This chapter is based on Ref. [36]: Stefano Martiniani, K. Julian Schrenk, Jacob D.
Stevenson, David J. Wales, and Daan Frenkel, Phys. Rev. E 94, 031301(R) (2016)

4.1 Introduction

In science we often face, and occasionally confront, the following question: “Can we estimate
the a priori probability of observing a system in a very unlikely state?” An example is:
“How likely is a given disordered sphere packing?”, not to mention questions such as “How
likely is life, or the existence of a universe like ours?” within the context of dynamical
systems and of the multiverse. In a number of cases, where the states correspond to extrema
in a high dimensional function, this question can be narrowed down to: “How large is
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the ‘basin of attraction’ of a given state?”. In such cases, estimating the probability of
observing a particular state is equivalent to computing the volume of the (high-dimensional)
basin of attraction of this state. That simplifies the problem, but not by much [176, 177]:
analytical approaches are typically limited to highly symmetric (often convex) volumes,
whilst ‘brute force’ numerical techniques can deal with more complex shapes, but only in
low-dimensional cases. Computing the volume of an arbitrary, high-dimensional body is
extremely challenging. For instance, it can be proved that the exact computation of the
volume of a convex polytope is a NP-hard problem [178–180] and, of course, the problem
does not get any easier in the non-convex case.

Yet, the importance of such computations is apparent: the volume of the basin of attraction
for the extrema of a generic energy landscape, be that of biological molecules [37], an
artificial neural network [45, 47, 48], a dynamical system [41, 42], or even of a “string theory
landscape” (where the minima corresponds to different de Sitter vacua [51, 56]), is essential
for understanding the systems’ behavior.

In high dimensions, simple quadrature and brute-force sampling fail [181] and other
methods are needed. In statistical mechanics, the problem is equivalent to the calculation of
the partition function (or, equivalently, the free energy) of a system, and several techniques
have been developed to tackle this problem (see e.g [151]). The earliest class of techniques
to compute partition functions is based on thermodynamic integration (TI) [151, 182, 183],
which is based on the idea that a transformation of the Hamiltonian of the system can
transform an unknown partition function into one that is known analytically. More recent
techniques include histogram-based methods (Wang-Landau [184], parametric and non-
parametric weighted histogram analysis method (WHAM) [185]) or Nested Sampling [186,
187]. In essence, all these techniques reduce the computation of the partition function to the
numerical evaluation of a one-dimensional integral.

Among the above methods Nested Sampling and Wang Landau are Monte Carlo algo-
rithms in their own right, that produce the (binned) density of states as a by-product. On the
other hand, TI can be identified as a particular Umbrella Sampling scheme [151], that outputs
multiple sets of equilibrium states that can be analysed, either by numerical quadrature (e.g.
see the Einstein crystal method (ECM) [146] described in Appendix B), or by WHAM and
multi-state Bennet acceptance ratio method (MBAR). All the above methods can be used
to compute high-dimensional volumes. However, the choice of the MBAR method [188] is
an optimal one. Not only is MBAR non-parametric (no binning is required) and the lowest
known variance reweighting estimator for free energy calculations, but it also eliminates the
need for explicit numerical integration of the density of states, thus reducing to a minimum
the number of systematic biases.
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One reason why brute force methods are not suited to estimate the volumes of high-
dimensional bodies, is that for such bodies the volume of the largest inscribed hypersphere,
quickly becomes negligible to the volume of the smallest circumscribed hypersphere – and
most of the volume of the circumscribed hypersphere is empty. Hence, using a Monte Carlo
‘rejection method’ to compute the volume of the non-convex body as the fraction of volume
contained in a hypersphere [124, 189], does not yield accurate results: the largest contribution
should come from points that are barely sampled, if at all.

In this chapter we show that MBAR can be used, not only to arrive at an accurate estimate
of a high-dimensional, non-convex volume, but that it can also be used to probe the spatial
distribution of this volume.

4.2 Computing high-himensional volumes

4.2.1 Mathematical basis

Our aim is to measure the volume of a n−dimensional connected compact manifold Γ⊆ Rn

with boundaries. We require this body to be “well guaranteed”, i.e. it has both an inscribed
and a circumscribed hypersphere [177]. To explore different parts of the non-convex volume,
we use a spherically symmetric bias that either favors the sampling of points towards the
center, or towards the periphery. We start by performing a series of K+1 random walks under
different applied bias potentials, similarly to the Einstein-crystal method [146], described
in Appendix B. We refer to each of the walkers as a “replica” Ri. Unlike TI, where biasing
is always ‘attractive’ (i.e. it favors larger confinement), in MBAR we are free to choose
both attractive and repulsive bias potentials. Additionally MBAR uses the full posterior
distribution (hence all moments) rather than just the average log-likelihood computed over
the posterior, as for TI. The present method directly yields an estimate for the statistical
uncertainty in the results that depends on the full distributions and is sensitive to their degree
of overlap, thus making the method more robust to under-sampling. In contrast, TI would
require an expensive resampling numerical procedure to achieve the same objective.

The Markov Chain Monte Carlo (MCMC) random walk of replica i ∈ [0,K] will generate
samples with unnormalised probability density qi(xxx), which for a standard Metropolis Monte
Carlo walk is

qi(xxx)≡ e−βiUi(xxx) (4.1)
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with biasing potential Ui(xxx) and inverse temperature βi; from now on we assume βi = 1 for
all walkers Ri, without loss of generality. The normalised probability density is then

pi(xxx) = Z−1
i qi(xxx) (4.2)

with normalisation constant
Zi =

∫

Rn
qi(xxx)dxxx. (4.3)

We require that the bias potential Ui(xxx) can be factorised as

Ui(xxx) = ΘΓ(xxx)ui(xxx) (4.4)

where ui is the reduced potential function and ΘΓ(xxx) is the “oracle” [177], such that for all
choices of ui(xxx),

Ui(xxx) =

{
ui(xxx) if xxx ∈ Γ

∞ if xxx ̸∈ Γ
(4.5)

We thus have that the normalisation constant in Eq. (4.3) becomes an integral over the
manifold Γ

Zi =
∫

Rn
e−Ui(xxx) dxxx =

∫

Γ

e−ui(xxx) dxxx. (4.6)

If replica RM is chosen to have bias uM = 0, by definition Eq. (4.6) becomes the volume
VΓ. Hence if we can compute the partition function for the reduced potential function uM = 0,
we can compute the volume VΓ.

The MBAR method [188] is a binless and statistically optimal estimator to compute the
difference in dimensionless free energy for multiple sets of equilibrium states (trajectories)
{xxx}i obtained using different biasing potentials ui(xxx). The difference in dimensionless free
energy is defined as

∆ f̂i j ≡ f̂ j− f̂i =− ln
(

Z j

Zi

)
(4.7)

which can be computed by solving a set of self-consistent equations as described in Ref.
[188]. Note that only the differences of the dimensionless free energies are meaningful as
the absolute values f̂i are determined up to an additive constant and that the “hat” indicates
MBAR estimates for the dimensionless free energies, to be distinguished from the exact
(reference) values.

Let us define the volume Vγ = πn/2rn
γ/Γ(n/2+1) of a n-ball γ ⊆ Γ with radius rγ centred

on xxx0 and absolute dimensionless free energy fγ =− lnVγ . For instance, when the volume
of a basin of attraction in a potential energy landscape is to be measured, xxx0 is chosen to
be the minimum energy configuration and γ ⊆ Γ the largest n-ball centred at xxx0 that fits



4.2 Computing high-himensional volumes 59

in Γ. We also define {xxx}i to be the set of states sampled with biasing potential ui and
{xxx}γ = ∪K

i=0{xxx : |xxx− xxx0| ≤ rγ}i to be the set of states re-sampled within γ with reduced
potential

uγ(xxx) =

{
0 if |xxx− xxx0| ≤ rγ

∞ if |xxx− xxx0|> rγ

(4.8)

In other words we augment the set of states with the additional reduced potential uγ . Note
that MBAR can compute free energy differences and uncertainties between sets of states not
sampled, viz. with a different reduced potential function, without any additional iterative
solution of the self-consistent estimating equations, see Ref. [188] for details.

Computing the free energy difference between the sets of equilibrium states {xxx}γ and
{xxx}M, chosen to have reduced potentials uM = 0 and uγ , we find that the absolute free energy
for the unbiased set of states {xxx}M is

fM = fγ +( f̂M− f̂γ) (4.9)

where the free energy difference f̂M− f̂γ is obtained by MBAR with associated uncertainty
δ∆ f̂Mγ . The volume of the manifold is then just VΓ = exp(− fM) with uncertainty δVΓ =

VΓδ∆ f̂Mγ . Note that the set of biasing potentials ui must be chosen so that there is sufficient
overlap between each neighbouring pair of pi(xxx). For instance for the harmonic bias ui =

ki|xxx− xxx0|2/2 we must choose a set of coupling constants ki so that all neighbouring replicas
have a sufficient probability density overlap.

4.2.2 Computational procedure

We choose a set of harmonic bias potential functions

ui =
1
2

ki|xxx− xxx0|2 (4.10)

with ki∈[1,M] = {k1, . . . ,kM−1,0} and perform 1010 Hamiltonian Parallel Tempering steps
as described in Sec.2.4 1. Note that each Monte Carlo step is followed by a full energy
minimisation to test whether the walker has stepped outside the basin of attraction. We choose
half of the k’s to be positive and the other half negative to accelerate equilibration as well as
to increase the DOS resolution near the boundary of the basin. The distributions obtained
from the replicas with negative coupling constants contribute to the final MBAR volume

1Note that for convenience we used the same choice of positive k’s as required for thermodynamic integration
as described in Sec. 2.4 . For this particular method any choice of k’s is appropriate, typically a geometric
distribution, denser for small k and coarser near k1 is also suitable.
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estimation, unlike for TI. We stress that the choice of biasing potential is arbitrary. Near the
origin we sample the set of configurations {xxx}0 directly from a hypersphere centred at xxx0 with
radius sampled from a Gaussian distribution with standard deviation σ =

√
⟨|xxx− xxx0|2⟩k1 ,

corresponding to a coupling constant k0 = 1/σ2. This choice of k0 is such that there is
sufficient overlap between the distributions of {xxx}0 and {xxx}1, as can be verified looking at
the two leftmost curves in Fig. 4.1 2. The corresponding bias potential function is

u0 = (n−1) log |xxx− xxx0|+
1
2

k0|xxx− xxx0|2, (4.11)

where the first term on the right-hand-side is the log-DOS for a n-ball, necessary to account
for the greater entropy associated with the regions of space further away from the origin. For a
system of N particles in d dimensions with fixed centre of mass we have n= (N−1)d degrees
of freedom. The overhead associated with this calculation is insignificant compared to the
Hamiltonian Parallel Tempering since the samples thus drawn are completely uncorrelated.

We compute the reduced free energy differences between each of 1+31 replicas with
reduced potential functions given by Eqs. (4.10)–(4.11) using PyMBAR [188, 190]. As
reference volume we choose γ to be the n-ball of radius rγ centred on xxx0 with approximately
R= 0.9 of its volume contained within the basin Γ. We choose γ ̸⊆ Γ to allow more samples
with |xxx− xxx0| ≤ rγ thus reducing the uncertainty in the MBAR estimate. ForR≈ 1 we can
correct exactly for this by noting that

R=
1

Vγ

∫

γ

p0(xxx)dxxx (4.12)

andR can be computed directly by Monte Carlo. We thus rewrite Eq. (4.9) as

fM = fγ +( f̂M− f̂γ)− logR. (4.13)

Note that the difference in reduced free energies computed using a reference sphere of radius
rγ/2 or 2rγ is within the statistical uncertainty, hence the method is robust with respect to the
choice of reference sphere. We also note that this method ought not be limited to the n-ball
as the choice of reference volume, in fact any geometrical body γ ⊆ Γ of known volume and
surface (thus for which a similar expression to Eq. (4.11) can be derived) is suitable, for
instance a hypercube or a hyperellipsoid. If γ ̸⊆ Γ then an accurate estimate ofR must be
available.

2To do so we sample a direction from the surface of the unit sphere and the length of the displacement from
a Normal(0,σ).
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Fig. 4.1 Kernel density estimation of the distance sampled by a random walk within the basin,
coupled to the minimum with decreasing harmonic coupling constant k from left to right.
The left-most curve was obtained by direct sampling as described in the text. Replicas with
k < 0 explore regions of the volume that would otherwise never be visited. This particular
example is of a disordered packing with polidispersity η = 0.037.

4.2.3 Density of states

From the analysis of the posterior probability density functions, the present method may yield
structural information, as an easy to compute by-product. Choosing a set of biasing potentials
ui(r) that are a function of the distance from the origin r = |xxx− xxx0|, we can compute the
overall density of states (DOS) for the manifold as a function of r. From each of the K +1
replicas’ trajectories {xxx}i we obtain a (binless) kernel density estimation (KDE) [181] of the
probability density functions hi(r), see Fig. 4.1 for an example, which must be unbiased and
summed over all replicas to obtain the overall log-DOS function as

logh(r) =
K

∑
i=0

wi(r)
(
loghi(r)+ui(r)−∆ f̂0i

)
. (4.14)

where wi(r) = hi(r)/∑
K
i=0 hi(r) are normalised weights and ∆ f̂0i are the free energy differ-

ences between replicas Ri and R0.
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Fig. 4.2 Conceptual illustration of the relationship between the d-ball and the d-cube in 2,
4, and d-dimensions. Consider a d-cube of unit side length and a d-ball with unit radius
sharing their centre. As d increases the diameter of the d-ball remains the same, while the
diagonal of the unit d-cube grows as

√
d and the number of corners grows as 2d: for d = 2

the unit square centred at the origin lies completely inside the unit-radius circle. At d = 4
the half-diagonal of the 4-cube has unit-length and thus the vertices lie on the surface of the
4-ball. For d≫ 4 the vertices of the cube lie far outside the unit ball. On the other hand, each
face of the unit d-cube is only distance 1/2 from the origin and therefore inside the d-ball.
In high dimensions all of the volume of the cube will be concentrated in the corners outside
the unit ball. Also note that while the volume of the d-cube is 1 for all d, the volume of the
unit d-ball shrinks to zero as d→ ∞ (curiously going through a maximum in 5 dimensions).

4.3 Basins of attraction in high dimensions

A basin of attraction is defined as the set of all points that lead to a particular minimum
energy configuration by a path of steepest descent on a potential energy surface (PES), see
Appendix A. Exploring a basin of attraction is computationally expensive because each call
to the oracle function ΘΓ(xxx) requires a full energy minimisation and equilibrating a MCMC
on a high dimensional support is difficult [32, 34, 35, 169]. For this reason little is known
about the geometry of these bodies [35, 85, 169, 191].

On the basis of ‘brute-force’ calculations on low-dimensional systems, Ashwin et al.
[124] suggested that the basins of attraction of energy minima tend to be “branched and
threadlike”, quite unlike the hyper-ellipsoidal shape that naively one might expect on the
basis of our experience with two or three-dimensional energy landscapes. However, the
approach of Ref. [124] breaks down for higher dimensional systems for which most of the
volume of the basin is concentrated at distances from the minimum where the overwhelming
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majority of points do not belong to the basin. The method that we present here allows
us to explore precisely those very rarified regions where most of the ‘mass’ of a basin is
concentrated.

In general the representation of all high dimensional convex bodies should have a hyper-
bolic form such as the one proposed in the illustration by Ashwin et al. due to the exponential
decay in volume of parallel hypersections (slices) away from the median (or equator) [192].
This holds true even for the simplest convex bodies, such as the hypercube, and the underlying
geometry need not be “complicated”, let alone dendritic, as one would guess at first from
the two-dimensional representation, see Fig. 4.2 for an illustration. For the simplest cases of
the unit d-sphere and the unit d-cube it can be shown that most of the volume is contained
within O(1/d) of the boundary and that at the same time the volume is contained in a slab
O(1/

√
d) and O(1) from the equator, irrespective of the choice of north pole, respectively

[176, 193]. Hence, there is virtually no interior volume. Such phenomena of concentration
of measure are ubiquitous in high dimensional geometry and are closely related to the law of
large numbers [193].

As we will show, the results presented by Ashwin et al. are, within the resolution available
to their method, qualitatively consistent with those for a simple (unit) hypercube.

4.4 Packing preparation protocol

We draw N = 32 particle radii {rHS}N from a Gaussian distribution Normal(1,η) > 0,
truncated at rHS = 0, set the box size to meet the target packing fraction of the hard sphere
fluid φHS and arrange the particles either in a fcc or a disordered configuration, as described
below. Given these hard sphere configurations, we switch on a soft repulsive interaction to
generate over-compressed jammed packings, as described in Sec. 2.3.2.

We systematically introduce structural disorder by preparing packings with (geometri-
cally) increasing particle size polydispersity η . For each η we prepare ∼10 packings at a
soft packing fraction φSS = 0.74148 with a soft to hard-sphere radius ratio of rSS/rHS = 1.12.
The particles are placed initially in a fcc arrangement xxxfcc and then relaxed via an energy
minimisation to a mechanically stable state xxx0. Energy minimisations are performed with
the CG_DESCENT algorithm [141–143]. Thus, for the lowest polydispersities the packings
remain in a perfect fcc structure and with increasing η they progressively move away into
a disordered glassy state. For the largest polydispersity, for which hard-core overlaps do
not allow an initial fcc arrangement, we sample a series of completely random initial states
followed by an energy minimisation. Note that even for η ≈ 0, due to the high packing
fraction, starting from a completely random set of coordinates, an energy minimisation does
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not lead to the fcc crystal but rather to the closest glassy jammed state (inherent structure).
We are interested in the effect of structural disorder on the shape of the basin of attraction for
the soft sphere packings.

4.5 Results: Effect of structural disorder on the basins of
attraction of jammed sphere packings

We determine the amount of structural disorder in the packing by computing the Q6 bond
orientational order parameter [171] and the average number of contacts per particle z, shown
in Fig. 4.3. As the polydispersity of the system is increased, the coordination number z
decays monotonically from the close-packed value of 12 to a value zfcc > z > ziso, where
ziso = 6−6/32≈ 5.81 is the average contact number at iso-staticity for a three-dimensional
packing of frictionless spheres [164]. The Q6 order parameter, computed using a solid-angle
based nearest-neighbor definition [194], decays from its fcc value well after the contact
number has dropped below the close-packed value of 12.

We start characterising the shape of the high dimensional basins of attraction associated
with these packings by performing an unconstrained random walk within the basin and
performing principal component analysis (PCA) on the trajectory thus obtained [181]. PCA
yields a set of eigenvectors that span the d-dimensional configurational space with associated
eigenvalues λ1, . . . ,λd . If the basin possess d-dimensional spherical symmetry then all the
eigenvalues are expected to be equal. A measure of the shape of a random walk is then the
asphericity factor [195]

Ad =
∑i> j(λi−λ j)

2

(d−1)
(
∑

d
i=1 λi

)2 , (4.15)

that has a value of 0 for a spherically symmetric random walk and of 1 for a walk that
extends only in one dimension. Note that for an unrestricted random walk one finds Ad =

2(d +2)/(5d +4) for linear chains [195] and therefore, contrary to intuition, the trails of
unrestricted random walks are elongated rather than spherical. However, in this work, we
consider restricted random walks designed to sample uniformly, hence in a spherical volume
we verify that Ad ≈ 0. Furthermore, we compute the distance of the centre of mass (CM)
position from the minimum energy configuration for the random walk, |⟨xxx⟩− xxx0|. This
quantity reveals whether the basin is isotropic around the minimum or not. Both quantities,
averaged over all packings, are plotted as a function of polydispersity in Fig. 4.3 along
with the structural order parameters. Interestingly, we observe that for low η the basins are,
on average, spherically symmetric and isotropic around the minimum. With the onset of
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Fig. 4.3 Structural disorder as a function of polydispersity η is quantified by the average
coordination number z (grey diamonds) and the Q6 bond orientational order parameter (blue
circles); error bars correspond to one standard deviation of the distribution of values per
particle. Basin shape is characterized by the asphericity factor Ad (green triangles) and
the mean distance of the centre of mass from the minmum (orange squares); error bars
correspond to the standard error. Filled and empty markers correspond to packings obtained
starting from an fcc and a disordered arragement, respectively.



66 Structural analysis of high-dimensional basins of attraction

75 80 85 90 95 100 105 110
− ln(Vmbar)

75

80

85

90

95

100

105

110

−
ln

(V
ti
n
t)

fcc 1.9E-06
fcc 5.6E-06
fcc 1.7E-05
fcc 5.1E-05
fcc 1.5E-04
fcc 4.6E-04
fcc 1.4E-03
fcc 4.1E-03
fcc 1.2E-02
dis 3.7E-02
fcc 3.7E-02
dis 1.1E-01

Fig. 4.4 Comparison of the volumes computed by thermodynamic integration, using only
the replicas with positive coupling constant, and by MBAR following the protocol described
in this work.

structural disorder we observe a marginal increase in asphericity and in the CM distance from
the minimum. In order to observe a significant change however, we need to go to the fully
disordered packings at higher polydispersity. With increasing polydispersity, we observe
significant changes in the structural order parameters and in the asphericity factor Ad and
CM distance from the minimum.

Using the procedure described in Sec 4.2.2 to compute the volume of the basins of
attraction, we find excellent agreement with thermodynamic integration, see Fig. 4.4. We
find that structural disorder has a dramatic effect on the volume of basins of attraction: from
Fig. 4.4 we see that monodispere and polydisperse fcc packings differ in size by a factor of
10 to 100, consistent with the reduced stability of the fcc structure when polidispersity is
increased. For polydisperse packings, on the other hand, ordered and disordered packings
differ in volume by 10 to 15 orders of magnitude, see for instance η = 0.037. Such a dramatic
difference highlights the role of the protocol: starting from a random quench we obtain
jammed packings with basins that are much smaller than for fcc, but orders of magnitude
more numerous.

As a natural by-product of the computation we are able to compute the radial probability
density function (DOS), shown in Fig. 4.5 together with the logarithm of the ratio between the
measured DOS, and that of a d-hypersphere. The log-ratio curves clearly show that all basins
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have a well-defined hyperspherical core region, where the curves are flat around 0, followed
by a series of exponential decays at larger distances from the minimum. For η < 10−4 the
curves are mostly indistinguishable from one another with most of the probability mass
concentrated between 1 < r < 3, as it can be seen from the inset showing the corresponding
cumulative distribution function (CDF). For higher polydispersity, the DOS curves have ever
longer tails, as it is also shown by the systematic shift in the CDF.

Importantly, the curves show that a ‘rejection’ method to measure the basin volume will
fail. In this method, the volume of the basin is determined by integrating the fraction of
points on a hyper-shell with radius r that fall inside the basin. That fraction is the function
shown in the bottom panel of Fig. 4.5. The most important contribution to the integral would
come from the range of r values where h(r) (top panel of Fig. 4.5) has a significant value. As
can be seen from the figure, for disordered systems this happens for values of r where the
fraction of hyper-sphere points within the basin is extremely small, in the example shown
O(10−30). Hence, the dominant part of the integral would come from parts that are never
sampled.

To interpret our results for the DOS curves, it is useful to compare with the corresponding
result for a unit hypercube (see Fig. 4.5). In one instance we do so by placing the ‘origin’ of
the hypercube at its CM, and in another by placing the origin on one of the 2d corners of the
hypercube, to generate a DOS of a system with a very anisometric density distribution. An
illustration of the d-cube geometry is given in Fig. 4.2. When the ‘origin’ of the hypercube is
at its CM (‘iso-cube’ in Fig. 4.5), we observe a larger hyperspherical core region followed
by a rapid single-rate decay in h(r), consistently with the numerous number of corners (2d)
of the d-cube. The observed h(r) for the ‘iso-cube’ is therefore qualitatively similar to
that obtained for ordered fcc packings with small η , in that they are both simply concave
down, although when η becomes large a point of inflection followed by a longer tail appears.
When the ‘origin’ is placed on one of the corners of the hypercube (‘hcube’ in Fig. 4.5),
we observe a smaller hyperspherical core region followed by a rapid decay with different
rates over different distances: the function is first concave down and then around r ≈ 2 there
is a first point of inflection. Not surprisingly, moving the origin of the system from the
center to the corner of a hypercube has a dramatic effect on the shape of the DOS, which
is now much more similar to the curves for large η , with similar characteristic changes of
slope observed for the basins. Again, this agrees with the observation that the CM distance
increases with increasing structural disorder. The effect of the basin asphericity, as measured
by the asphericity factor Ad is difficult to infer from the DOS alone.

We thus measure and observe that the structural isotropy and high degree of rotational
symmetry in the crystal, as indicated by the Q6 parameter, is reflected in the isotropy and



68 Structural analysis of high-dimensional basins of attraction

0 1 2 3 4 5 6 7 8
r

−250

−200

−150

−100

−50

0

ln
(h

(r
)/
rN
−

1
)

iso-hcube
hcube
fcc 1.9E-06
fcc 5.6E-06
fcc 1.7E-05
fcc 5.1E-05
fcc 1.5E-04
fcc 4.6E-04
fcc 1.4E-03
fcc 4.1E-03
fcc 1.2E-02
dis 3.7E-02
fcc 3.7E-02
dis 1.1E-01

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

h
(r

)

0 2 4
r

0

1

cd
f(
r)

Fig. 4.5 Top plot shows the measured basin radial probability density function h(r) (DOS)
for packings at different polydispersities. The solid and dashed blue curves correspond to the
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one of the corners. The top inset shows the cumulative distribution function for h(r). The
bottom panel shows the logarithm of the ratio of the DOS of the basin and of a 93D hyperball.
The bottom inset shows the set of barely distinguishable overlapping curves measured for
low polydispersities. Top and bottom plots share the x-axis.



4.6 Conclusions 69

spherical symmetry of the basin around the minimum, even for relatively large polydis-
persities when the average contact number has already dropped considerably from the
close-packed value. Similarly, the structural disorder at larger η is reflected in the anisotropy
and asphericity of the basin. Hence, changes in the basin structure, as indicated by the
asphericity factor, the CM and the density profile, occur before any observable changes occur
in Q6 and after the average contact number (z ≲ 9) has fallen well below the close-packed
value of 12.

4.6 Conclusions

An efficient method for the computation and characterisation of high-dimensional volumes
based on the multi-state Bennet acceptance-ratio method has been presented. The technique
is simpler and more versatile than the existing, and state-of-the-art, Einstein crystal method
[146] discussed in Appendix B, as well as free of any additional systematic biases, introduced
for instance by the numerical integration step in ECM. Numerical results for the MBAR-based
method are found to be in excellent agreements with ECM.

As well as being binless and statistically optimal, the method yields a direct estimate of
the statistical errors and, as natural by-product, the histogram method allows us to obtain
an estimate of the radial probability density profile interior to the basin. Numerical results
for jammed packings of three-dimensional soft spheres show that brute-force ’rejection’
methods, such as the one proposed in Ref. [124], are unsuited to compute the volume of
basins of attraction in high dimensions. Our analysis suggests that the basin of attraction of
disordered polydisperse soft sphere packings have an extremely small spherical core region,
are overall oblate, as shown by PCA, have numerous corners, as shown by comparison
with a hypercube, and their centre of mass is shifted with respect to the minimum energy
configuration. The basin of attraction of order soft sphere packings with low polydispersity,
on the other hand, are isotropic around the centre of mass, that also coincides with the
minimum energy configuration. At the density we study, we also show that order packings
have larger basin volumes.

Finally, despite not having explored this direction, the method can be easily generalised
to the computation of the free energy of solids, analogously to the Einstein-crystal method,
see Appendix B.





Chapter 5

Density propagation method for surveying the
energy landscape geometry

The enumeration of the minima in an arbitrary potential energy landscape can be
accomplished by measuring the volumes of ‘basins of attraction’ associated with
a subset of those minima, in what is known as the mean basin volume method.
Key applications of this method include the direct computation of the entropy
of complex physical systems, or the a priori assessment of the performance
quality of complex objective functions used e.g. in the context of machine
learning. Here a novel technique for calculating basin volumes is presented,
addressing several shortcomings of the established approach. We develop a
practical implementation of this technique and validate it through application
to systems with known volumes. The new method is found to be scalable, with
simulations revealing a linear relationship between system dimensionality and
the computational cost of measuring the basin volume. In a proof-of-principle
demonstration, the technique is used to measure the volumes of all three basins
of attraction of the one-dimensional XY model with eight spins. The basin of
the global energy minimum is found to occupy (79.31± 0.17)% of the total
system volume, with the remaining two minima accounting for (10.35±0.08)%
each. Finally, we show how this method is able to assist in the visualisation of
complex, high-dimensional basin structures.

— This chapter is based on Ref. [196]: Shang-Wei Ye, Stefano Martiniani, K. Julian
Schrenk, Jacob D. Stevenson, Daan Frenkel, and Eric Vanden-Eijnden, submitted
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5.1 Introduction

The emergent behaviour of complex systems can often be better understood in light of their
entropy, which is determined by the number of accessible microstates [151, 197]. For all
but the simplest systems, the number of these states is so large that its calculation poses a
formidable challenge even for the most sophisticated analytical or numerical approaches
presently available. As such, the development of efficient and robust methods for enumerating
the microstates of a given system and the analysis of their properties is of great general
interest. The development of this class of methods is crucial for understanding the dynamical
and thermodynamical properties of numerous systems in physics, chemistry, or biology,
whose evolution can be modeled as a navigation over a high-dimensional energy landscape
with an exponential number of stationary points [125]. In this context, key questions include
determining the number and level of stationary points, the volume of the basins of attraction
associated with energy minima, and the height of the energy barriers that need to be overcome
to escape these basins [25, 28, 32, 34–36]. Similar questions have also emerged in computer
science and machine learning, in particular in the context of the training of deep neural
networks [43, 45, 47]. This problem involves the optimization of a complex objective
function whose geometric properties ultimately determine the feasibility of the learning
algorithm and the performances of the network it leads to.

A promising method for calculating the number of stable points in an energy landscape
has been developed within the context of granular packings, where the enumeration of the
possible microstates allows for a direct computation of the configurational (granular) entropy.
The method in question is the so called ‘mean basin volume’ (MBV) method [32, 34, 35],
outlined in Sec. 2.2. The basis of this method is the computation of the volumes of the ‘basins
of attraction’ [198] of the mechanically stable packings. Conventionally, this is achieved
by thermodynamic integration from a harmonic reference state [33, 151], see Sec. 2.4, or
from a region of known volume [36], see Sec. 4.2. This is not without limitations. These
methods rely on a Markov Chain Monte Carlo that at each step generates a full energy
minimisation path to check whether the step falls within the basin; all minimisation paths are
then discarded. Given that generating paths is the most time-consuming part of the method, it
would be advantageous if more useful data could be extracted from them. Here we design and
evaluate a new approach to the calculation of basin volumes, termed the ‘density propagation
method’, which makes use of novel mathematical results and provides quantitative insights
into the geometry of basins of attraction.
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5.2 Density propagation method

5.2.1 Mathematical basis

Consider a D-dimensional system with its potential energy at a configurational coordinate xxx
given by U(xxx). A basin of attraction can be associated with a local minimum of U(xxx) at xxxi.
This is defined as the set Γ of all points xxx which belong to the steepest-descent trajectories
reaching xxxi. The volume of this basin is VΓ. A particular trajectory can be characterized by
the vector field XXX(t,xxx), which is parametrized by a ‘time’ t such that

d
dt

XXX(t,xxx) =−∇∇∇U [XXX(t,xxx)], XXX(0,xxx) = xxx. (5.1)

Note that XXX(t,xxx)→ xxxi as t→∞. Furthermore, following a trajectory backwards in time gives
steepest-ascent, so that XXX(t,xxx) approaches the basin boundary as t→−∞. The uniqueness
theorem guarantees that trajectories do not intersect each other at finite t.

We now introduce a reference region γ ⊂ Γ of volume Vγ , that contains the minimum xxxi.
Any trajectory starting inside the basin but outside the reference, i.e. at xxx ∈ Γ\ γ (where \
denotes the set-theoretic difference), will hit the surface ∂γ of the reference region at some
finite, positive t = τ+(xxx), at a coordinate XXX(τ+(xxx),xxx) ∈ ∂γ .

Suppose there is some material filling Γ\ γ with uniform density at t = 0, which flows
according to XXX(t,xxx). Since the total amount of material in Γ is conserved, its density ρ(xxx, t)
must satisfy the continuity equation

∂ρ(xxx, t)
∂ t

= ∇∇∇ · [ρ(xxx, t)∇∇∇U(xxx)], (5.2)

subject to the initial condition

ρ(xxx,0) =





1/VΓ\γ xxx ∈ Γ\ γ

0 xxx /∈ Γ\ γ

, (5.3)

where VΓ\γ ≡VΓ−Vγ is the volume of Γ\ γ . This describes how the material flows through
∂γ and enters the reference region γ to accumulate at xxxi as t→ ∞. Solving Eq. (5.2) allows
us to calculate the fraction ν∂γ(xxx)dσ(xxx) of material that entered the surface through a given
surface element dσσσ(xxx)≡ n̂nn(xxx)dσ(xxx) at xxx ∈ ∂γ . We find

ν∂γ(xxx) =
1

VΓ\γ
|n̂nn(xxx) ·∇∇∇U(xxx)|

∫
∞

0
det[J(xxx, t)]dt, (5.4)
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where n̂nn(xxx) is the unit normal to ∂γ at xxx ∈ ∂γ , and J(xxx, t) is the Jacobian matrix of a steepest-
ascent transformation:

J(xxx, t)≡ ∂XXX(−t,xxx)
∂xxx

. (5.5)

A proof of Eq. (5.4) can be found in Appendix G. Combining Eqs. (5.1) and (5.5) gives

d
dt

J(xxx, t) =
∂∇∇∇U [XXX(−t,xxx)]

∂xxx
. (5.6)

Using this in Jacobi’s formula [199] gives us an equation for det[J(xxx, t)]:

d
dt

det[J(xxx, t)]=det[J(xxx, t)]Tr
{

J−1(xxx, t)
d
dt

J(xxx, t)
}

=det[J(xxx, t)]Tr
{

∂∇∇∇U [XXX(−t,xxx)]
∂XXX(−t,xxx)

}

≡det[J(xxx, t)]Tr{H[XXX(−t,xxx)]},

(5.7)

where H[XXX(−t,xxx)] is the Hessian matrix of the potential energy U at position XXX(−t,xxx). This
is just a high-dimensional version of the Euler expansion formula from fluid mechanics [200,
201], telling us how the volume of a small parcel of material changes as it travels along a
steepest-ascent trajectory.

Returning to Eq. (5.4), we note that ν∂γ can also be interpreted as the uniform density in
Γ\ γ mapped on to ∂γ by steepest-descent. In other words, it satisfies

∫

∂γ

f (xxx)ν∂γ(xxx)dσ(xxx) =
1

VΓ\γ

∫

Γ\γ
f [XXX(τ+(xxx),xxx)]dxxx, (5.8)

i.e. the expectation of some arbitrary function f (xxx), with xxx ∈ ∂γ drawn from ν∂γ(xxx), must
equal the expectation of f [XXX(τ+(xxx),xxx)], with xxx sampled from a uniform distribution in Γ\ γ .

We now have all the equations necessary for deriving the key result. The surface area Sγ

of the reference region is

Sγ =
∫

∂γ

dσ(xxx) =
∫

∂γ

ν∂γ(xxx)
ν∂γ(xxx)

dσ(xxx). (5.9)

Using the result of Eq. (5.8) with f (xxx) = 1/ν∂γ(xxx), Eq. (5.9) can be rewritten as

Sγ =
1

VΓ\γ

∫

Γ\γ

dxxx
ν∂γ [XXX(τ+(xxx),xxx)]

. (5.10)
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Recognizing 1/VΓ\γ as the uniform density function in Γ\ γ , and substituting from Eq. (5.4),
we find

Sγ = ⟨ν−1
∂γ

[XXX(τ+(xxx),xxx)]⟩Γ\γ
≡VΓ\γ⟨ρ−1

∂γ
[XXX(τ+(xxx),xxx]⟩Γ\γ .

(5.11)

where ⟨· · · ⟩Γ\γ denotes the expectation with respect to a uniformly distributed xxx ∈ Γ\ γ , and

ρ∂γ(xxx∂γ)≡ |n̂nn(xxx∂γ) ·∇∇∇U(xxx∂γ)|
∫

∞

0
det[J(xxx∂γ , t)]dt, (5.12)

with xxx∂γ ≡ XXX(τ+(xxx),xxx). Recalling that VΓ\γ =VΓ−Vγ , Eq. (5.11) gives the final result:

VΓ =Vγ +
Sγ

⟨ρ−1
∂γ

(xxx∂γ)⟩Γ\γ
. (5.13)

There is a clear physical interpretation of this result for the system of flowing material we have
been considering; ρ∂γ(xxx∂γ) can be seen as the time-integrated volumetric flux through a given
point on the reference surface. Taking an average of this quantity, weighted appropriately
for the material’s initial distribution, and multiplying by the surface area Sγ of the reference
region should naturally return the initial volume VΓ\γ of the material. By adding the volume
of the reference region to this, we get the volume VΓ of the entire basin.

5.2.2 Computational procedure

With the derivation of Eq.(5.13), the theoretical elements necessary for understanding the den-
sity propagation method have been laid out. Practical questions regarding its implementation
are now addressed.

Firstly, we must define a suitable reference region γ . For simplicity, a hypersphere
centered on xxxi is chosen. Since γ must be enclosed completely by the basin Γ, it is important
to choose the radius Rγ of this sphere to be sufficiently small. The most reliable way of
ensuring this is to randomly generate many positions uniformly on ∂γ and perform steepest-
descent minimisation from each one, checking that they all map to xxxi. However, this is
computationally very expensive. Instead, we use a weaker, but also substantially cheaper,
test. Note that for a correctly specified γ , ∇∇∇U(xxx) for all xxx ∈ ∂γ points outwards from ∂γ .
Thus, so long as the proposed reference sphere is not so large as to contain multiple minima,
it is sufficient to verify ∇∇∇U(xxx) · (xxx− xxxi)> 0 for many trial positions xxx. If a negative result
is recorded, Rγ is reduced and the test repeated. It is not appropriate to just choose some
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arbitrary, extremely small Rγ , since this reduces the proportion of VΓ known analytically,
thus increasing the contribution of numerical errors to the final volume estimate.

The Metropolis algorithm is used to sample points from a uniform distribution inside the
basin. In this MCMC walk, starting at the minimum xxxi, the energy Ei of a configuration is
given by:

Ei(xxx) =





0 xxx ∈ Γ

∞ xxx /∈ Γ

, (5.14)

i.e, all steps taking the MCMC walk outside the basin are rejected. Two checks are in place
to determine whether point xxx is in Γ:

1. Any xxx for which |xxx− xxxi| ≤ Rγ must be in γ ⊂ Γ, so can be accepted.

2. If |xxx− xxxi| > Rγ , steepest-descent is performed, i.e. we generate XXX(t,xxx) for t ≥ 0.
Demonstrating the existence of some finite t = τ+(xxx) for which |XXX(τ+(xxx),xxx)−xxxi| ≤ Rγ

is sufficient for concluding xxx ∈ Γ\ γ . In this case, xxx is accepted and the coordinate
xxx∂γ ≡ XXX(τ+(xxx),xxx) is recorded.

From every valid position xxx of the random walk, a steepest-ascent path is also followed
towards the edge of the basin. Combining the ascent and descent paths gives a complete
trajectory, connecting the point xxx∂γ on the reference sphere to the point XXX(−∞,xxx∂γ) on the
basin boundary, via xxx.

The most important computation in the density propagation method is the characterization
of the trajectory passing through an arbitrary xxx. This is done by updating XXX(t,xxx) according
to Eq. (5.1) by Euler integration, as outlined in Algorithm 1. In practice three termination
conditions are used in Algorithm 1; satisfying any one of them ends the algorithm:

• Condition 1: |XXXn− xxxi|< Rγ , indicating entry into the reference sphere.

• Condition 2: |∇∇∇U(XXXn)| is below some minimum threshold, suggesting that the path
has reached the vicinity of some stationary point other than xxxi. If this happens during
steepest-descent, we conclude that xxx /∈ Γ; otherwise it means the ascending end of the
trajectory has reached a maximum on the basin boundary.

• Condition 3: Pertains only to the steepest-ascent stage and triggers if

∇∇∇U(XXXn) ·∇∇∇U(XXXn−1)< 0, (5.15)

indicating that the basin edge has been overstepped. In this event, XXXn is discarded so
that the end position of the trajectory is inside the basin at XXXn−1. This is taken as our
estimate for XXX(−∞,xxx∂γ).
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Algorithm 1 Trajectory and propagation of dilation

1: XXX0← xxx; n← 0; Tr(H0)← Tr[H(XXX0)]

2: while termination condition is not satisfied do
3: //steepest-descent
4: choose integration step ∆tn;
5: XXXn−1← XXXn−∆tn∇∇∇U(XXXn);
6: Tr(Hn−1)← Tr[H(XXXn−1)];
7: n← n−1;
8: end while

9: if we can conclude that xxx ∈ Γ then
10: xxx∂γ ← XXXn
11: n← 0
12: while termination condition is not satisfied do
13: //steepest-ascent
14: choose integration step ∆tn;
15: XXXn+1← XXXn +∆tn∇∇∇U(XXXn);
16: Tr(Hn+1)← Tr[H(XXXn+1)];
17: n← n+1;
18: end while
19: end if

After steepest-ascent has terminated, we are left with a complete series of positions {XXXn}
giving a discretized approximation to the trajectory. We can now compute ρ∂γ(xxx∂γ) using
Eq. (5.12).

Although simple Euler integration could be used to solve Eq. (5.7) for det[J(xxx, t)], a more
accurate result is obtained if we first consider the analytical solution:

ln{det[J(xxx∂γ , t)]}=
∫ t

0
Tr{H[XXX(−t ′,xxx∂γ)]}dt ′, (5.16)

where we have used the initial condition det[J(xxx∂γ ,0)]=1, which follows from the definition
of J(xxx, t) in Eq. (5.5). Approximating the r.h.s. of Eq. (5.16) with a Riemann sum, we can
use an iterative scheme to estimate {det(Jn)} corresponding to {XXXn}:

ln[det(Jn+1)] = ln[det(Jn)]+Tr(Hn)∆tn. (5.17)

Finally, we take ∫
∞

0
det[J(xxx∂γ , t)]dt ≈∑

n
det(Jn)∆tn, (5.18)



78 Density propagation method

and ρ∂γ(xxx∂γ) follows from Eq. (5.12).
The choice for the integration steps {∆tn} is a very important practical consideration.

Using smaller steps reduces numerical errors, at the expense of computation time. A robust
method should set step sizes according to local information on the PEL, such that steps are
small in regions of rapid Jacobian evolution (high degree of dilation) and large when little is
changing (low degree of dilation). From Eq. (5.17), it is clear that the quantity Tr(Hn)∆tn
should be small for accurate estimation of det[J(xxx, t)]. Thus, a good choice for ∆tn is usually:

∆tn =
Θ

|Tr(Hn)|
, (5.19)

where Θ is some suitably small constant. This expression for ∆tn should not be used blindly,
however. For instance, a step should not be taken if it could lead to the trajectory overstepping
the reference sphere entirely. A safeguard against this is to have a maximum step proposal,
∆tmax

n = Rγ/|∇∇∇U(XXXn)|, so that two successive trajectory points are never separated by more
than the reference sphere radius. This is another reason against choosing an extremely small
Rγ . A minimum step proposal ∆tmin

n is also required to prevent arithmetic underflow in the
integration of Eq. (5.1).

We must also be wary of large steps at the ends of the trajectory. If the step transporting
the trajectory through the reference sphere is large, we will get a poor estimate of xxx∂γ , and by
extension, the quantity |n̂nn(xxx∂γ) ·∇∇∇U(xxx∂γ)|. At the other end of the trajectory, the decision to
invalidate the last step if it satisfies Eq. (5.15) means the trajectory is always terminated inside
the basin, at some point at most a distance ∆tn|∇∇∇U(XXXn)| from the basin boundary. Since no
information is gathered beyond this point, it is problematic if ∆tn|∇∇∇U(XXXn)| is large, especially
in high-dimensional systems where most of the total basin volume is concentrated very close
to the boundary [202]. To minimise these end-effects, a backtracking routine is implemented,
allowing the trajectory to terminate closer to the basin boundary, see Algorithm 2. On the
other hand, if ∆tn leads to the crossing of the reference sphere surface, we solve for ∆tn in
|XXXn−1− xxxi|= |XXXn−∆tn∇∇∇U(XXXn)− xxxi|= Rγ .

Algorithm 2 Backtracking
1: c← user-defined constant

2: if ∆tn leads to the crossing of the basin edge then
3: revert trajectory to state immediately before crossing;
4: continue updating position using ∆tn/c instead of ∆tn;
5: use the same termination logic as before;
6: end if
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Having computed ρ∂γ(xxx∂γ) for every xxx in the walk, we obtain ⟨ρ−1
∂γ

(xxx∂γ)⟩Γ\γ by taking
an average of the reciprocals correctly weighted to guarantee detailed balance i.e. whenever
a move is rejected the contribution from the last position xxx is double counted. Since Vγ and
Sγ are known, we can apply Eq. (5.13) to evaluate VΓ. Uncertainty in the volume can be
estimated using the bootstrap method [166].

5.3 Numerical results

The density propagation method was tested in two phases. In a first phase we used a simple
hyperspherical basin to gain insight into the major sources of error in the estimation of
volumes. The second phase consisted of applying the technique to more complex test
systems, offering some indication of how well the method should be expected to perform in
the context of, for instance, jammed packings. In what follows, all systems are scaled so that
Rγ = 1 gives a suitable reference sphere inside each basin.

5.3.1 Sources of error in the volume estimation

There are two main sources of error in the estimation of the volume VΓ by the density
propagation method. One is the sampling error associated with drawing xxx from Γ\ γ , which
can be reduced by performing a longer MCMC random walk (assuming that the walk is
well equilibrated) and thus spawning more trajectories. The other is the numerical error in
computing ρ∂γ(xxx∂γ) for a given trajectory, which depends on the size of the integration steps
∆tn.

As discussed before, ∆tn can be chosen such that its product with Tr(Hn) equals some
constant Θ, see Eq. (5.19). To study how the choice of Θ affects the numerical error, we
considered a spherically-symmetric Gaussian potential centered on the origin, enclosed by a
hard hyperspherical boundary sharing the same centre. The spherical symmetry of this basin
means that, in the exact limit, all xxx ∈ Γ\ γ should have the same ρ∂γ(xxx∂γ). This makes the
basin ideal for investigating numerical errors in isolation from sampling error. A graphical
representation of the density propagation method in the two-dimensional case is shown in
Fig. 5.1a.

Fig. 5.1b shows the dimensional dependence of η ≡ |V̂Γ−VΓ|/VΓ, the relative error in
basin volume estimates, for several different values of Θ. In each case, η is seen to stabilise
around some fixed value when the number of dimensions D is large. From these results, it
can be deduced that in the absence of sampling error, η becomes proportional to Θ. The
constant of proportionality is expected to be basin-dependent; here we find η ≈ 1.1Θ for
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(a) (b)

(c) (d)

Fig. 5.1 (a) Trajectories for a Gaussian potential centered inside a circular box. Positions
visited by the MCMC walk are indicated by white dots. (b) Relative error η ≡ |V̂Γ−VΓ|/VΓ

in the estimated volume of a hyperspherical basin, for 2≤ D≤ 340 and several different Θ

values, using 10 trajectories per estimate. The error bars refer to the standard errors computed
from 10 repeat test runs. (c) Volume estimates as a function of the number of trajectories NT
for a five-dimensional (anisotropic) hyperspherical basin on Gaussian potential offset from
the origin. (d) Dependence of sampling error on the number of trajectories NT , for several
numbers of dimensions.
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D > 20. This simple relationship does not hold for smaller D. A possible explanation for this
is that trajectories are more coarsely discretized in low dimensions; since Tr(Hn) is typically
smaller, larger integration steps are selected via Eq. (5.19), leading to greater numerical
errors. This issue is compounded by the fact that in low D, a higher proportion of the basin
volume lies near the basin centre than in high D, so poor trajectory characterization near
the basin centre adds an additional layer of error. As a result, there is a lack of an obvious
relationship between η and D when D is small.

Having established how the selection of Θ affects the numerical error, we then look at
how the sampling error in a volume estimate depends on the number of trajectories spawned,
NT . For this we considered an asymmetrical version of the previous basin, with an identical
hyperspherical boundary but with the underlying Gaussian potential offset by a unit distance
from the origin. Choosing Θ = 10−3 for negligible integration errors, an MCMC walk is
performed inside the basin, with the volume estimate revised after the generation of each
new trajectory. The walk continues until estimates have stabilized around the true value.
Fig. 5.1c shows a time series for these estimates in the five-dimensional case. From the
resultant collection of trajectories, the sampling error as a function of NT can be quantified
by bootstrap. This involves drawing many subsamples of size NT from the original collection
of N′T ≥ NT trajectories. The standard deviation σm of subsampled volume estimates is taken
to be the sampling error associated with NT . The above process was repeated for a range of
NT values, in different dimensions, to give the results shown in Fig. 5.1d. The sampling error
in the density propagation method appears to decrease as N−1/2

T , which is consistent with the
use of a Monte Carlo process to generate the distribution of points xxx∂γ .

5.3.2 Application to a mixture of Gaussians

To evaluate the effectiveness of the density propagation method in the context of the mean
basin volume approach described in Sec. 2.2, we looked at a mixture of Gaussians potential
constructed from the sum of several Gaussian potentials. As before, a hyperspherical
boundary was added so that results could be compared against a known system volume
Vsystem. The centres of the individual Gaussians were chosen randomly inside the system
boundary, subject to a minimum separation constraint between them. Once a ‘mixture of
Gaussians’ potential has been initialized, its minima can be found by local optimisation, using
the centres of its constituent Gaussians as starting points. The density propagation method
can then be used to estimate the volume V (i)

Γ
of each basin, and ∑

i
V (i)

Γ
can be compared to

the exact system volume Vsystem. The outcome of this process for a two-dimensional trial
system constructed by summing 10 Gaussians is illustrated in Fig. 5.2a. With Θ = 0.05 and
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(a) (b)

Fig. 5.2 (a) Application of the density propagation method to a two-dimensional potential
constructed by summing 10 Gaussians. The spherical boundary (outer circle) defines the
system’s volume that when estimated with 200 trajectories per basin agrees with the true
value to within 0.2%. (b) Number of energy function evaluations NEFE required to achieve a
converged estimate of Vtest for increasing dimensionality. The error bars are computed from
20 samples (basins) for each number of dimensions D.

NT = 200 per basin, the estimated total volume of this particular system was within 0.2% of
the true value.

After validating the density propagation method on the two-dimensional trial system, we
sought to assess the scalability of the technique to higher-dimensional PELs. In simulations,
the costliest function calls are generally those involving U(xxx); in our case, ∇∇∇U(xxx) and H(xxx),
which we re-evaluate after every integration step, see Algorithm 1. Hence, our next test
benchmarks how the number of energy function evaluations NEFE needed for a converged
volume estimation depends on dimensionality. In this test, we look at mixture of Gaussian
potentials consisting of five basins each. We select one basin by minimising from a point
sampled uniformly at random in the hyperspherical boundary and compute its volume Vtest

using 105 MCMC steps. Convergence is defined to be the largest number of MCMC steps
such that the volume estimate deviates more than 1% from the final value. The number
of MCMC steps needed until convergence translates to a number of function calls NEFE,
see Fig. 5.2b. The evidence from this test indicates that NEFE scales linearly with system
dimensionality D.
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5.3.3 Application to the XY model

In our final test we consider the well-known XY lattice spin model. In this model, the
potential energy of a lattice of N spins oriented at θ1, · · · ,θN is given by

UXY (θθθ) =−∑
i∈N

∑
j∈n(i)

cos(θi−θ j), (5.20)

where θθθ ≡ (θ1, · · · ,θN) and n(i) is defined to return the nearest-neighbors of the ith spin.
In past studies, the stationary points of UXY (θθθ) have been directly enumerated for two-
dimensional lattices of up to N = 100 spins [203, 204]. Therefore, this system is a good
benchmark for testing the density propagation method and the mean basin volume approach.

As a proof of concept, we considered a one-dimensional chain of N = 8 spins, with
periodic boundary conditions. As others had done previously [203, 204], we fixed θ1 at zero
to avoid numerical difficulties associated with the global O(2) symmetry of this system. Since
the seven unfixed spins can each have any orientation in (−π,π], the volume of configuration
space for this system is Vsystem = (2π)7 ≈ 386 598. The system has three minima (verified
by basin-hopping [205]): a global minimum with all spins aligned, and two local minima
with each spin offset by π/4 from its neighbors. The corresponding configurations are shown
in Fig. 5.3a.

The volumes V global
Γ

and V local
Γ

of the basins corresponding to the global minimum
and one of the local minima were computed using an incremental trajectory spawning
procedure analogous to that outlined in Sec. 5.3.2. The results are summarized in Table 5.1.
Due to the symmetry of the system, both local minima have the same volume, hence
Vsystem =V global

Γ
+2V local

Γ
. Using the values from Table 5.1, the estimated system volume is

388 700±800. The uncertainty was computed by bootstrap and thus reflects the sampling
error, which in this case amounts to 0.2%. The estimated volume in fact differs from the
exact value by 0.5%, indicating additional sources of error. These are numerical in origin
and could be reduced by using smaller integration steps. From the results, the proportion
of phase space occupied by each basin can be deduced. The basin of the global minimum

Minimum Nconv NEFE VΓ

Global 34 800 1.846×108 308 300±800
Local 20 900 1.123×108 40 220±70

Table 5.1 Estimation of V global
Γ

and V local
Γ

, with Θ = 0.001. The number of trajectories
required for convergence is denoted Nconv, and the associated number of function evaluations
NEFE. The uncertainties in VΓ correspond to standard errors estimated using 1000 bootstrap
samples.
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is found to occupy (79.31±0.17)% of the total system volume, with each local minimum
occupying (10.35±0.08)%1.

  𝑈𝑈𝑋𝑋𝑋𝑋 (𝜽𝜽) = −16

𝑈𝑈𝑋𝑋𝑋𝑋 (𝜽𝜽) = −8
√

2 

Global Minimum 

Local Minima 

(a)

(b) (c)

Fig. 5.3 (a) Minimum energy configurations in the N = 8 one-dimensional XY model. The
fixed spin is highlighted in red. (b) Plot of the proportion of trajectories still unterminated at
distance R from the minimum, fT (R). The characteristic profile of a maximum at the end
of a long dendrite is highlighted in red, while a maximum lying away from the extremities
of the basin boundary has a typical profile highlighted in green. (c) Scatterplot showing the
arc length of each trajectory against its end-to-end distance. The bottom-right image is a
zoomed-in version of the highlighted region.

1These uncertainties have been calculated with the simplifying assumption of a 0.5% numerical error
contribution to both V global

Γ
and V local

Γ
in addition to the bootstrapped standard errors shown in Table 5.1.
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5.3.4 Visualizing basins with trajectories

Thus far, the density propagation method has been used solely for calculating basin volumes.
In what follows, we demonstrate how the collection of trajectories generated for a given basin
in fact reveals information about the basin’s geometry. The basin associated with the global
minimum in the N = 8 one-dimensional XY model (Fig. 5.3a) will be used as an example.

First, by considering the furthest radial distance from the minimum reached by each
trajectory, we can calculate the proportion fT of trajectories with segments lying outside
a sphere of radius R centered on the minimum. Fig. 5.3b shows how fT evolves with
increasing R. The value of R for which fT reaches zero gives the largest length scale of the
basin. Moreover, energy maxima can be identified from vertical drops in fT . A vertical
drop followed by an interval of constant fT suggests a maximum positioned at the end of
a long dendrite; all trajectories ending on the maximum are at their greatest distance from
the minimum there. A smooth tailing-off in fT after a vertical drop signifies the opposite;
trajectories ending at these maxima may possess segments lying radially further out from
the minimum. The total decrease in fT associated with a particular maximum indicates the
height of that maximum. In Fig. 5.3b, the drops in fT occurring furthest from the minimum
are all step-like in profile, implying a dendritic basin structure.

It is also instructive to compare the arc length of each trajectory to its end-to-end distance,
as is done in Fig. 5.3c. Points near the blue line correspond to relatively straight trajectories,
whilst those at large vertical distances from it represent trajectories taking highly nonlinear
routes through space. A series of vertical structures can be identified in the plot, indicating
groups of trajectories with different arc lengths but almost the same end-to-end distance.
Trajectories belonging to such a group connect a highly localized region of the reference
sphere surface to the same maximum, via very different paths. These paths enclose a volume
of configuration space which is mapped to essentially a single point on the reference sphere
by steepest-descent.

Finally, looking at how the probability density of trajectory arc lengths changes with
R (Fig. 5.4a), can alert us to the radial distances at which there are topological features of
interest inside the basin. For R just greater than 1, very few trajectories have arc lengths
much longer than R−1, the shortest distance to ∂γ . As such, the distribution exhibits high
positive skewness, since the mean arc length is effectively equal to R− 1, as well as low
variance. The variance increases from less than 0.1 up to a maximum of 3.8 for R ∈ [3.0,6.3].
This suggests that the PEL becomes highly anisotropic in this interval, such that the shapes
of trajectories traversing different regions of the basin begin to differ greatly. The arc length
distributions are bimodal over this range of R (Fig. 5.4b), with the left peak in each instance
reflecting those trajectories which have yet to deviate from a linear path. Towards higher R,
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(a) (b)

Fig. 5.4 (a) Trajectory arc length densities for increasing R. Densities were obtained via
Gaussian kernel density estimation, using Silverman’s rule for bandwidth selection [206].
Note that since Rγ = 1, the minimum arc length possible at a given R is R−1. (b) Evolution
of the mean, variance and skewness of the trajectory arc length distribution with increasing
R. These quantities were calculated from the kernel density estimates at 100 equidistant
intervals between R = 1 and R = 15.

the trajectory population decreases, leaving only groups of similar trajectories behind. This
explains the variance fall-off for R ≳ 6.3.

5.4 Conclusions

We have developed the density propagation method for surveying energy landscapes and
measuring volumes of basins of attraction. This implementation has been applied with success
to the basins of several test systems in various dimensions, demonstrating, in principle at
least, its compatibility with the MBV method for the calculation of the number of minima
in an energy landscape. The new technique has proven to be capable of producing accurate
basin volume estimates not only for various toy potentials based on Gaussians in spherical
boxes, but also for a simple physical system: the N = 8 one-dimensional XY model. In the
latter case, we have provided testable predictions for the basin volumes associated with the
global and local minima. Furthermore, preliminary simulations involving the method have
suggested a linear relationship between computational workload and problem dimensionality.

The density propagation method has been shown to hold several advantages over existing
approaches of energy landscape exploration. Notably, in coming to a volume estimate, it
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makes use of data accumulated during energy minimisation, the most computationally taxing
part of most related computational techniques. Moreover, the method deals directly with
steepest-descent basins of attraction, which are guaranteed to be compact (note that this
requirement can be relaxed the methods discussed in Chapt. 2, 4). Finally, insight into basin
geometries can be obtained as a by-product of the density propagation method, making it a
valuable tool for visualizing the complex, high-dimensional landscapes being studied.

In its current implementation, the density propagation method has produced encouraging
results. However, further development and testing is necessary to establish the practical
viability of this method, e.g., when combined with dynamics different from steepest descent.
In particular it would be interesting to find dynamics which accelerate convergence while
preserving a basin shape true to steepest descent. One possibility in this direction would be
to combine the density propagation method with the string method [207, 208], which would
permit to calculate the new descent trajectory fast given the old one.





Chapter 6

Monte Carlo sampling for stochastic weight
functions

Conventional Monte Carlo simulations are stochastic in the sense that the accep-
tance of a trial move is decided by comparing a computed acceptance probability
with a random number, uniformly distributed between 0 and 1. Here we con-
sider the case that the weight determining the acceptance probability itself is
fluctuating. This situation is common in many numerical studies. We show that
it is possible to construct a rigorous Monte Carlo algorithm that visits points in
state space with a probability proportional to their average weight. The same
approach has the potential to transform the methodology of a certain class of
high-throughput experiments or the analysis of noisy datasets.

— This chapter is based on Ref. [209]: Daan Frenkel, K. Julian Schrenk, Stefano Martiniani,
preprint arXiv:1612.06131

6.1 Introduction

Dynamic Monte Carlo simulations aim to sample the states of the system under study
such that the frequency with which a given state is visited is proportional to the weight
(often ‘Boltzmann’ weight) of that state. The equilibrium distribution of a system, i.e. the
distribution for which every state occurs with a probability proportional to its (Boltzmann)
weight, is invariant under application of a single Monte Carlo step. Algorithms that satisfy
this criterion are said to satisfy ‘balance’ [210]. Usually, we impose a stronger condition:
‘detailed balance’, which implies that the average rate at which the system makes a transition
from an arbitrary ‘old’ state (o) to a ‘new’ state (n) is exactly balanced by the average rate for
the reverse rate. The detailed balance condition is a very useful tool to construct valid Markov
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Chain Monte Carlo (MCMC) algorithms. We can write the detailed balance condition as
follows;

P(xxxo)Pgen(o→ n)Pacc(o→ n) = P(xxxn)Pgen(n→ o)Pacc(n→ o) (6.1)

where P(xxxi) denotes the equilibrium probability that the system is in state i (in this case, i can
stand for o or n) characterised by a (usually high-dimensional) coordinate xxxi). Pgen(i→ j)
denotes the probability to generate a trial move from state i to state j. In the simplest case,
this may be the probability to generate a random displacement that will move the system
from xxxi to xxx j, but in general the probability to generate a trial move may be much more
complex (see e.g. Ref. [151]). Finally Pacc(i→ j) denotes the probability that a trial move
from state i to state j will be accepted.

Many simple MC algorithms satisfy in addition microscopic reversibility, which means
that Pgen(i→ j) = Pgen( j→ i). In that case, detailed balance implies that

Pacc(o→ n)
Pacc(n→ o)

=
P(xxxn)

P(xxxo)
(6.2)

There are many acceptance rules that satisfy this criterion. The most familiar one is the
so-called Metropolis rule [211]:

Pacc(o→ n) = Min
{

1,
P(xxxn)

P(xxxo)

}
(6.3)

The acceptance for the reverse move follows by permuting o and n. In the specific case of
Boltzmann sampling of configuration space, where the equilibrium distribution is proportional
to the Boltzmann factor P(xxxi) ∼ exp(−Ui/kBT ), where Ui is the potential energy of the
system in the state characterised by the coordinate xxxi, T is the absolute temperature and kB is
the Boltzmann constant. In that case, we obtain the familiar result

Pacc(o→ n) = Min{1,exp[−(Un−Uo)/kBT ]} (6.4)

6.2 Monte Carlo simulations with ‘noisy’ acceptance rules.

There are many situations where conventional MCMC cannot be used because the quan-
tity that determines the weight of a state i is, itself, the average of a fluctuating quantity.
Specifically, we consider the case of weight functions fluctuating according to a Bernoulli
process, i.e. in an intermittent manner, although our approach is not limited to Bernoulli pro-
cesses. Examples that we consider are ‘committor’ functions, or the outcome of a stochastic
minimisation procedure.
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Equally interesting are examples where a MCMC algorithm would be employed to steer
a (high throughput) experiment where we aim to optimise an output (e.g. crystal nucleation)
that is only determined in a probabilistic sense by the initial conditions (typically specified by
a large number of parameters). Yet another example would be an experiment that aims to find
optimal solutions based on stochastic outcomes (e.g. finding the biologically most functional
and/or least harmful composition of a multi-drug cocktail). Problems of this nature – and
there are many of them – are, at present not tackled using MCMC sampling. Yet, there is
no doubt MCMC sampling is the method of choice to explore high-dimensional parameter
space.

Note that the problem that we are discussing here is different from the case considered by
Ceperley and Dewing (CD) [212]. CD analysed the problem of performing MCMC sampling
of Boltzmann weights in cases where the energy function is noisy. We come back to this
point later: suffice it to say that in the case studied in Ref. [212], the crucial point is that the
Boltzmann weight is a nonlinear function of the energy and that therefore the Boltzmann
factor corresponding to the average energy is not the same as the average of the Boltzmann
factor obtained by sampling over energy fluctuations. Ref. [212] showed how to construct an
approximate algorithm for such cases, which becomes exact if the fluctuations are normally
distributed. Here we consider the case where the probability to sample a point is given
rigorously by the average of the stochastic estimator of the weight function.

To give a specific example, we consider the problem of computing the volume of the basin
of attraction of a particular energy minimum i in a high-dimensional energy landscape [32,
34–36]. The algorithms discussed in Chapt. 2, 4, 5 rely on the fact that, for every point xxx in
configuration space, we can determine unambiguously whether or not it belongs to the basin
of attraction of minimum i: if a (steepest-descent or similar) trajectory that starts at point xxx
ends in minimum i, the ‘oracle function’ Oi(xxx) = 1, and otherwise it is zero.

However, many minimizers are not deterministic – and hence the oracle function is
probabilistic. (In fact, historical evidence suggests that ancient oracles were probabilistic at
best). In that case, if we start a number of minimisations at point xxx, some will haveOi(xxx) = 1
and others haveOi(xxx) = 0. We denote with P(i)

O (xxx) the average value of the Bernoulli process
defined by the oracle function Oi(xxx). In words: P(i)

O (xxx) is the probability that the oracle
function associated with point xxx has a value of one.

We now redefine the basin volume (probability mass) of minimum i as

vi ≡
∫

dxxx P(i)
O (xxx) (6.5)
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where xxx denotes the coordinate in d-dimensional space. Clearly,

Ω

∑
i=1

vi =Vtotal (6.6)

where Ω is the number of distinct minima. This equation expresses the fact that every
trajectory must end up somewhere. Hence, we now have an algorithm that allows us to define
basin ‘clouds’ rather than basin volumes, but for the rest the language stays the same.

6.2.1 Naive MC algorithm

If we consider a large number of trial moves form point xxx to point xxx′, the average acceptance
probability is PO(xxx′). If we consider a large number of trial moves in the reverse direction,
the acceptance probability is PO(xxx). In steady state, the populations should be such that
detailed balance holds. If we denote the ‘density’ of sampled points by ρ(xxx), then

ρ(xxx)Pacc(xxx→ xxx′) = ρ(xxx′)Pacc(xxx′→ xxx) (6.7)

Hence if we choose the acceptance probability to be equal to the (instantaneous) value of the
oracle function in the trial state, then

ρ(xxx)PO(xxx′) = ρ(xxx′)PO(xxx) (6.8)

or
ρ(xxx)
ρ(xxx′)

=
PO(xxx)
PO(xxx′)

(6.9)

In words: points are sampled with a probability proportional to the value of the oracle
function. Note that in this naive version of the algorithm, the acceptance rule is not the
Metropolis rule that considers the ratio of two weights. Here it is the probability itself.
Hence, whenever the probability becomes very low, the acceptance of moves decreases
proportionally.

There is another class of problems that can be sampled with this algorithm: those that
are deterministic but for which the domain where the oracle function is one is highly non-
compact. In this case, the key requirement is that the sampling algorithm is ergodic: it
should avoid getting stuck in small islands where the oracle function is one. If that can be
achieved, then we can use exactly the same approach as before, be it that now the oracle
function behaves like a more or less random telegraph function in space. Still, we can define
vi ≡

∫
dxxx PO(xxx) as before.
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6.2.2 Configurational bias approach

In the way it has been formulated above, there is a problem with this approach: as the system
moves into a region where PO(xxx) is very low, the acceptance of moves becomes very small
and hence the ‘diffusion coefficient’ that determines the rate at which configuration space is
sampled, would become small. As a consequence, sampling of the wings of the distribution
may not converge.

One way to mitigate the sampling problem is to use an approach that resembles config-
urational bias MC (CBMC) [213], but is different in some respects. The key point to note
is that, if we know all random numbers that determine the value of the oracle function –
including the random numbers that control the behaviour of the stochastic minimiser – then
in the extended space of coordinates and random numbers, the value of the oracle function is
always the same for a given point.

One way to exploit this would be to generate a random walk between points that are
surrounded by a ‘cloud’ of k points where we compute the oracle function (k is arbitrary,
but as we shall see later, it may pay to make it large). We denote the central point (i.e. the
one to which or from which moves are attempted) by xxxB, where ‘B’ stands for ‘backbone’.
The reason for calling this point a ‘backbone’ point is that we will be sampling the k points
connected to it, but we will not compute the oracle function at this very point. Hence, xxxB

may even be located in a region where the oracle function is strictly zero. The coordinates of
the k cloud points around xxxB are given by:

xxxB,i = xxxB +∆i (6.10)

with i = {1,2, · · · ,k}. The vectors ∆ are generated by some stochastic protocol: e.g. the
vectors may be uniformly distributed in a hypersphere with radius Rh. The precise choice of
the protocol does not matter, as long as the rules are not changed during the simulation. For
a fixed protocol, the set xxxB,i is uniquely determined by a set of random numbers RB. It is
convenient (but not essential) to choose the protocol such that any acceptable trial direction
about a backbone point is equally likely to be generated. Finally, we note that the value of
the oracle function Oi for a given point xxxB,i is uniquely determined by another set of random
numbersRO.

We now define an extended state space

x̃xxB ≡ {xxxB,RB,RO} . (6.11)

In this space, the oracle functions are no longer fluctuating quantities.
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We can now construct a MCMC to visit (but not sample) backbone points. To this end,
we compute the ‘Rosenbluth weight’ of point x̃xxB as

W (x̃xxB) =
k

∑
i=1
Oiωi, (6.12)

where Oi ≡O(x̃xxB,i) and ωi ≡ ω(x̃xxB,i) is some arbitrary (Boltzmann) bias.
We can then construct a MCMC algorithm where the acceptance of a trial move from the

‘old’ x̃xx(o)B to the ‘new’ x̃xx(n)B is given by

Pacc(o→ n) = Min

{
1,

W (x̃xx(n)B )

W (x̃xx(o)B )

}
(6.13)

As the probabilities to generate the trial directions for forward and backward moves, and
the generation of random numbers that determine the value of the oracle function are also
uniform, the resulting MC algorithm satisfies super-detailed balance and a given backbone
point x̃xxB will be visited with a probability proportional to W (x̃xxB).

Note that during a trial move, the state of the old point is not changed, hence it retains the
same trial directions and the same set {RO}. If the trial move is rejected, it is this ‘extended
point’ that is sampled again.

6.2.3 Sampling

To discuss sampling, it is best to first discuss a ‘thought-algorithm’ i.e. a valid algorithm
that we can construct, but that we would never use in practice. In our thought algorithm,
we consider the transition between one particular point, say io in the cloud around the old
backbone position and another point in in the cloud around the new backbone position. Note
that the statistical weight of these points depends on x̃xx(o)B and x̃xx(n)B , respectively. We denote
these statistical weights by P(x̃xx(o)B ) and P(x̃xx(n)B ). We can now write down the detailed balance
condition:

P(x̃xx(o)B )Pgen(x̃xx
(n)
B )Psel(in)Pacc(o→ n) = P(x̃xx(n)B )Pgen(x̃xx

(o)
B )Psel(io)Pacc(n→ o), (6.14)

where Psel(in) denotes the probability to select point in from among the cloud of points around
xxx(n)B (and similarly, for Psel(io)). We now make the following choice for Psel:

Psel(in) =
O(in)ω(in)

∑
k
i′=1O(i′n)ω(i′n)

=
O(in)ω(in)

W (x̃xx(n)B )
, (6.15)
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x̃B

x̃B,i = x̃B + �i

O = 0
O = 1

Fig. 6.1 ‘Cloud’ sampling: illustration of the configurational bias approach for a simple
oracle defined by the gray shaded region, such that O = 1 inside the gray boundary and
O = 0 outside. Blue and red squares are the accepted and rejected backbone points x̃xxB,
respectively. The ‘cloud’ points x̃xxB,i = x̃xxB +∆i are represented by orange circles. In this
example we randomly sample k = 4 ‘cloud’ points from a circle of fixed radius centred on
the backbone point (dotted circles). Each ‘cloud’ is sampled with probability proportional to
the Rosenbluth weight defined in Eq. (6.12). Note that valid backbone points are not required
to fall in the region where O = 1 since the Rosenbluth weight does not depend on the value
of the oracle at the backbone point.

With this definition of the selection probability, we can write:

P(x̃xx(o)B )

P(x̃xx(n)B )
=
O(io)ω(io)
O(in)ω(in)

(6.16)

where we have used the fact that the generation probabilities for forward and backward
moves are equal and we have inserted Eq. (6.13) for the ratio of the acceptance probabilities.
Eq. (6.16) implies that in equilibrium, the probability to occupy state io is proportional
to O(io)ω(io), where it should be stressed that the value of the oracle function depends
on both the spatial coordinates of point io and on the set of random numbers {RO} that,
together, determine the value of O(io). If we were to average over all possible values of the



96 Monte Carlo sampling for stochastic weight functions

random numbers {RO} then it is clear that the probability to sample a state with the spatial
coordinates of the point io is proportional to ⟨O(io)⟩ω(io). In other words, the algorithm
described above samples all points in configuration space with a probability proportional to
the local average of the oracle function and to the (usually Boltzmann) bias evaluated at that
point.

Whilst the above description of the sampling strategy allows us to establish that all points
in space are sampled with the correct frequency, it is not an efficient algorithm. The reason
is obvious: in order to compute the weights W , the oracle function must be computed for k
points, and yet in the naive version of the algorithm, only one point is sampled. In practice,
we take steps between backbone points sampled according to Eq. (6.13) and keep all k cloud
points for all the accepted backbone points, as described below. An illustration of the method
is given in Fig. 6.1. Efficiency can be further improved using the approach underlying
‘waste-recycling’ Monte Carlo [214], we can in fact include all points in the sampling, even
if the actual trial backbone move is rejected.

For every backbone point x̃xxB visited, we can compute the observable (say A) of the set of
k cloud points as follows:

Asampled =
∑

k
i=1OiωiAi

∑
k
i=1Oiωi

(6.17)

The average of A during a MCMC simulation of L steps is:

⟨A⟩= 1
L

L

∑
j=1

(
∑

k
i=1OiωiAi

∑
k
i=1Oiωi

)

j

(6.18)

where the index j labels the different backbone states visited.

6.2.4 Parallel Tempering

Parallel Tempering (PT) [148, 149] is a Monte Carlo scheme that targets the slow equilibration
of systems characterised by large free energy barriers that prevent the efficient equilibration
of a MCMC random walk. In PT, m replicas of the system are simulated simultaneously at
different temperatures, different chemical potentials [215] or different Hamiltonians [216,
217]. Configurations are then swapped among replicas, thus making ‘high temperature’
regions available to ‘low temperature’ ones and vice versa. In the basin volume calculations
of Refs. [34–36, 155] and discussed in Chapt. 2, 3, 4, Hamiltonian PT is essential to achieving
fast equilibration of the replicas’ MCMC random walks performed inside the body of the
basin with different applied biases.
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The configurational bias approach to ‘cloud’ sampling embodied by Eq. (6.13) can be
easily generalised to PT to find an acceptance rule for the swap of configurations between
replicas i and j

Pacc(i→ j) = Min

{
1,

W (x̃xx(i)B ,ω( j))W (x̃xx( j)
B ,ω(i))

W (x̃xx(i)B ,ω(i))W (x̃xx( j)
B ,ω( j))

}
(6.19)

where we defined the Rosenbluth weight W (x̃xx(i)B ,ω( j)) = ∑
k
l=1O(x̃xx

(i)
B,l)ω

( j)(x̃xx(i)B,l). It is impor-
tant to note that PT is truly an equilibrium Monte Carlo method: the microscopic equilibrium
of each ensemble is not disturbed by the swaps.

6.2.5 Combine with ‘Waste-recycling’ MC

Using a CBMC-style approach would increase the speed with which the relevant configuration
space is explored. However, it has the drawback that it may be wasteful: generating a trial
move involves computing k oracle functions and, in normal CBMC the points this generated
would not be sampled at all if the trial move is rejected.

However, we can do better by using ‘waste-recycling’ MC [214]. In that case we can
combine the information of the accepted and the rejected states in our sampling. Specifically,
we denote the probability to accept a move from an old state o to a new state n by Pacc(o→
n), then, normally we would sample Asampled(n) if the move is accepted and Asampled(o)
otherwise. However, we can do better by combining the information and sample

Awr = P′acc(o→ n)Asampled(n)+ [1−P′acc(o→ n)]Asampled(o) (6.20)

where P′acc denotes the acceptance probability for any valid MCMC algorithm (not just
Metropolis). In fact, it is convenient to use the symmetric Barker rule [218] to compute P′acc.
In that case, we would sample

Awr =

(
∑

k
i=1OiωiAi

)
old +

(
∑

k
i=1OiωiAi

)
new(

∑
k
i=1Oiωi

)
old +

(
∑

k
i=1Oiωi

)
new

(6.21)

Hence, all 2k points that have been considered are included in the sampling.
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Fig. 6.2 Deterministic oracle: Volume calculation for an n-ball with radius R = 0.5 and
n ∈ [2,20]. Numerical results (symbols) were obtained by the configurational bias approach
of Eq. (6.13) and Eq. (6.19) (PT), with k ‘cloud’ points, and MBAR. Inset: mean square
displacement computed by Eq. (6.18). Solid blue lines are analytical results and error bars
refer to twice the standard error (as estimated by MBAR for the volume).

6.3 Numerical Results

6.3.1 Basin volume calculations

We test the proposed configurational bias approach by numerically computing the basin
volume (probability mass) for a stochastic oracle function as defined in Eq. (6.5). We choose
a few simple oracle functions, for which the integral in Eq. (6.5) can be solved analytically.

The volume calculations are performed using the multistate-Bennett acceptance ratio
method (MBAR) [188] as described in Chapt. 4. In essence, we compute the dimensionless
free energy difference between a region of known volume f̂ref =− lnVref + c and the equilib-
rium distribution of points sampled uniformly within the basin f̂tot =− lnVtot + c, estimated
by MBAR up to an additive constant c. Since fref =− lnVref is known, we obtain the basin
volume as ftot = fref +( f̂tot− f̂ref). We use 15 replicas with positive coupling constants for
all examples discussed herein.

First, we test the method for a deterministic oracle, namely a simple n-ball of known
volume Vn-ball = πn/2Rn/Γ(n/2+1) with radius R = 0.5 and n∈ [2,20]. As shown in Fig. 6.2
we correctly recover the volume and the mean square displacement using the acceptance rule
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Fig. 6.3 Stochastic oracle: Volume calculation for the oracle defined in Eq. (6.22) with
radius R = 0.5, λ = 0.1 and dimensions n ∈ [2,20]. Symbols (lines are guide to the eye) are
numerical results obtained by the configurational bias approach of Eq. (6.13) and Eq. (6.19)
(PT), with k ‘cloud’ points, and MBAR. Solid blue line is the analytical result and error bars
refer to twice the standard error as estimated by MBAR. At large n accuracy increases by
increasing k as the random walker diffuses more efficiently through regions of space where
⟨O⟩≪ 1. Implementing PT also improves equlibration for small k by allowing the walker to
escape low density regions when stuck.

defined in Eq. (6.13) for k = 10 ‘cloud’ points, with and without parallel tempering swap
moves, with acceptance rule defined in Eq. (6.19). Hence, the algorithm is clearly sampling
the correct equilibrium distributions.

We test the method for a stochastic oracle function defined as

O(xxx) =
{

1 if |xxx|< R
Uniform[0,1]< exp[−(|xxx|−R)/λ ] if |xxx| ≥ R

(6.22)

with volume
V = 2(Rn/n+λ

n exp(R/λ )Γ(n,R/λ ))πn/2Rn/Γ(n/2),

where Γ(a,x) is the incomplete gamma function. Results for dimensions n ∈ [2,20], R = 0.5
and λ = 0.1 are shown in Fig. 6.3. Note that, despite the volume being finite, the basin
is unbounded in the sense that the average value of the oracle only tends to zero as as
|xxx| → ∞. As the dimensionality of the basin increases, all of the volume will concentrate
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Fig. 6.4 Transition state finding: we consider the one-dimensional problem of identifying
a transition state xtr, corresponding to the location of a Gaussian energy barrier separating
a reactant and a product with the same energy. The oracle, defined (symmetrically) by the
stochastic oracle in Eq. (6.23), corresponds to the outcome of a ‘reaction experiment’, i.e.
O(x) = 1 if from position x the reaction is successful, and O(x) = 0 otherwise. We find
the transition state by allowing a random walker to diffuse to xtr = 0, the position along the
reaction coordinate where the probability of crossing is highest. A series of random walks
are performed according to Eq. (6.13) for different numbers of ‘cloud’ points k. The walkers
are constrained to reject moves for which the energy is below that of the initial position, thus
excluding reactants and products from the sampling. The figure shows the position of the
walker backbone along the reaction coordinate as a function of the number of MCMC steps.
For increasing k the random walkers diffuse more efficiently and therefore converge faster to
the transition state xtr = 0. Traditional single-point sampling does not move at all from the
initial condition.

away from the centre of mass in regions of space where the oracle has a high probability
of returning 0. Hence, it becomes more difficult for a random walker to diffuse efficiently
as the dimensionality of space increases. We can verify this in Fig. 6.3: for n < 6 results
seem to be independent of the number of ‘cloud’ points and of whether PT swaps are
implemented. However, growing deviations are observed for increasing n and accuracy
increases significantly for growing number of ‘cloud’ points k and with the use of PT, whose
non-local moves allow the walker to escape regions of low density (for which ⟨O⟩ ≪ 1)
when stuck.
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6.3.2 Transition state finding

In this example we show that our approach can be used to efficiently identify the transition
state along a known reaction coordinate. As an illustration, we consider the (trivial) one-
dimensional problem of identifying the transition state xtr, corresponding to the location of a
Gaussian energy barrier separating a reactant and a product with the same energy. The oracle,
in this case, corresponds to the outcome of a ‘reaction experiment’, i.e. O(x) = 1 if from
position x the reaction is successful, and O(x) = 0 otherwise. We find the transition state by
allowing a random walker to diffuse to xtr, the position along the reaction coordinate where
the probability of crossing is highest. We do so for varying numbers of cloud points k and
show that our method outperforms traditional ‘single-point’ sampling.

Note that points in the transition-state ensemble (in the one-dimensional case: just
one point) are characterised by the property that the committor has an average value of
0.5. However, any individual trajectory will either be crossing (“1”) or non-crossing (“0”).
Hence, the ‘signal’ is stochastic. As anticipated, we consider the one-dimensional case of a
particle with kinetic energy K sampled according to the 1-dimensional Maxwell Boltzmann
distribution, crossing a Gaussian barrier with height Utr = 30kT and variance σ2 = 1 1. We
define the oracle symmetrically such as

O(x) =
{

1 if K >Utr−U(x)
0 if K ≤Utr−U(x)

(6.23)

and constrain the walk to reject moves for which the energy is below that of the initial
position, such that O = 0 if U(x) < U(x0); we choose x0 = 2σ . By thus constraining the
sampling, we are excluding the ‘reactant’ and ‘product’ states from our sampling. In Fig. 6.4
we show results for backbone step-size 0.25σ , ‘cloud’ radius 0.25σ and varying number
of ‘cloud’ points k. One can clearly see that, as the number of ‘cloud’ points increases, the
system diffuses faster towards the transitions state, whilst for the traditional single-point
sampling, the walker does not move at all from the initial position.

6.4 Relation to earlier work

In their 1999 paper, Ceperley and Dewing [212] consider a different situation where normal
‘Metropolis’ sampling fails, namely the case where the calculation of the energy function is
subject to statistical errors (with zero mean). In that case, we cannot use the conventional
Metropolis rule Pacc = Min{1,exp(−β∆u)}, where u is the instantaneous value of the en-

1We choose as our unit of length σ , hence in our reduced units kT = σ2
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ergy difference, because what is needed to compute the correct acceptance probability is
exp(−β ⟨∆u⟩), but what is sampled is ⟨exp(−β∆u)⟩ ̸= exp(−β ⟨∆u⟩). Ceperley and Dewing
showed that if the fluctuations in the energy of the individual states, and therefore the fluctua-
tions in ∆u are normally distributed, and if the variance in energy is the same for all states,
then we can still get an algorithm that samples the correct Boltzmann distribution, if we use
as acceptance rule

Pacc = Min{1,exp[−β∆u− (βσ)2/2]} (6.24)

where σ2 = 2σ2
s , with σs denoting the variance in the energy of the individual states. Note

that the situation considered in Ref. [212] is very different from the case that we consider
here, as we focus on the situations where the average of the (fluctuating) oracle functions
is precisely the weight function that we wish to sample. However, the current approach
allows us to rederive the CD result. We note that, as before, we can consider extended
states characterised by the spatial coordinates of the system and by the random variables that
characterise the noise in the energy function. First, we note the average Boltzmann factor of
extended state i is

⟨Pi⟩= exp[−β ⟨u⟩i]exp[+(βσs)
2/2] (6.25)

and therefore ⟨Pn⟩
⟨Po⟩

= exp[−β ⟨∆u⟩] (6.26)

Hence, the average Boltzmann factor of any state i is still proportional to the correct Boltz-
mann weight. However, an MCMC algorithm using the instantaneous Boltzmann weights
would not lead to correct sampling as super-detailed balance yields

Pn(xxxn)

Po(xxxo)
= exp[−β∆u] (6.27)

and hence 〈
Pn

Po

〉
= exp[−β ⟨∆u⟩+(βσ)2/2] (6.28)

which is not equal to
⟨Pn⟩
⟨Po⟩

= exp[−β ⟨∆u⟩] (6.29)

If, however we would use the CD acceptance rule, we would get

〈
Pn

Po

〉
= exp[−β ⟨∆u⟩+(βσ)2/2]× exp[−(βσ)2/2]

= exp[−β ⟨∆u⟩] = ⟨Pn⟩
⟨Po⟩

(6.30)
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Hence, with this rule the states would (on average) be visited with the correct probability.
Note that, as the noise enters non-linearly in the acceptance rule, the CD algorithm is very
different from the one that we derived above. Note also that the present derivation makes it
clear that the CD algorithm can be easily generalised to cases where the noise in the energy
is not normally distributed, as long as the distribution of the noise is state-independent.

6.5 Conclusions

Thus far the algorithm described above was presented as a method to perform Monte Carlo
sampling in cases where the weight function itself is fluctuating. However, the method
might also be used to control certain experiments that study stochastic events (e.g. crystal
nucleation, cell death or even the effect of advertising). Often, the occurrence of the desired
event depends on a large number of variables (temperature, pressure, pH, concentration of
various components) and we would like to select the optimal combination. However, as the
desired event itself is stochastic, individual measurements provide little guidance. One might
aim to optimise the conditions by accumulating sufficient statistics for individual state points.
However, such an approach is expensive. The procedure described in the preceding sections
suggests that it may be better to perform experiments in a ‘cloud’ of state points around a
backbone point. We could then accept or reject the trial move to a new backbone state using
the same rule as in Eq. (6.13).





Chapter 7

Conclusions and outlook

In this thesis a robust numerical protocol for the characterization of the complexity of energy
landscapes has been established. The capabilities of the approach have been demonstrated
within the context of the computation of the configurational entropy of two and three-
dimensional jammed packings. By means of numerical simulation we have demonstrated the
extensivity of the granular entropy as proposed by Edwards for three-dimensional jammed
soft-sphere packings and produced a direct test of the Edwards conjecture for the equivalent
two dimensional systems. We find that Edwards’ hypothesis of equiprobability of all jammed
states holds only at the (un)jamming density, that is precisely the point of practical significance
for many granular systems.

Numerous questions on the the generality and possible implications of our findings
remain to be explored. It needs to be established whether our results on the equiprobability
of jammed packings are valid in three dimensions, and a full finite-size scaling analysis of
our entropy calculations over multiple densities is still lacking. It remains to be clarified
to what extent our conclusions are protocol dependent, specifically what is the dependence
on the initial state of the system and on the jamming protocol. Furthermore it needs to be
elucidated whether there is a distinction between ‘direct’ and ‘tapping’ protocols, and what
is the effect of shear on the system.

It would be hard to imagine that equiprobability of states and jamming criticality (whose
super-universal character seems to be independent of the protocol used to generate the
jammed configurations [219]) occur at the same density by pure coincidence. Our analysis
points in the direction of a fundamental connection between the two, but this notion needs to
be clarified further. It would be interesting to probe whether the emergence of equiprobability
at a characteristic (critical) point can be observed in other out-of-equilibrium problems, such
as the random organization process [220] and other absorbing state models [221]. Since both
jammed packings and absorbing state models have been found to exhibit hyperuniformity at
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the critical point [222, 223], it would then be natural to ask whether any connection can be
established.

In this thesis two new recipes for the computation of high-dimensional volumes have been
presented, that improve on the established approach by either providing more statistically
robust estimates of the volume or by exploiting the trajectories of the paths of steepest
descent. Both methods also produced as a natural by-product unprecedented details on the
structures of high-dimensional basins of attraction. It would be interesting to explore whether
the density propagation method could be extended to other forms of dynamics and to probe
whether information on the dilation of space gathered during the density propagation steps
could be used to bias the sampling, in order to guarantee a faster convergence.

It would clearly be very exciting to use our protocol to study different phenomena. Studies
of the shear yielding of jammed packings are already underway, but the emergence of the
correct phenomenology only for large system sizes poses a challenge. The application of the
method to spin and structural (thermal) glasses that are not amenable to analytical treatment
would also be very interesting.

Finally, we have presented a novel Monte Carlo algorithm to tackle problems with
fluctuating weight functions. This is a common situation, for instance, in machine learning
when the “training” is performed by stochastic optimisation. The method has been shown to
improve accuracy in the computation of the ‘volume’ of high dimensional ‘fluctuating’ basins
of attraction and to be able to identify transition states along known reaction coordinates. We
argue that the approach can be extended to the optimization of the experimental conditions
for observing certain phenomena, for which individual measurements are stochastic and
provide little guidance.

I could have listed more possible applications of the techniques developed in this thesis,
but my aim is not to provide an exhaustive list, simply because more applications are likely
to emerge with time. These conclusions mainly express my own excitement that a class of
problems that had been intractable in the past can now be addressed numerically.
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Appendix A

Paths of steepest descent

A path of steepest descent is a curve in the dN−dimensional configuration space that follows
the gradient of the potential. We can parametrise this path with respect to the path length
s, such that |dxxxs/ds| = 1. The arc-length along the path connecting xxxs′ to xxxs′′ is therefore
|s′′− s′|. This results follows immediately from the integral defining the path length:

∫ s′′

s′

∣∣∣∣
dxxxs

ds

∣∣∣∣ds =
∫ s′′

s′
ds = s′′− s′ (A.1)

Requiring that the tangent vector to the path is anti-parallel to the gradient (the potential
decreases as s increases), by definition xxxs satisfies:

dxxxs

ds
=− ∇U(xxxs)

|∇U(xxxs)|
(A.2)

where |∇U(xxxs)| is the norm of the gradient vector. Eq. (A.2) is short hand for a system of
dN first-order differential equations

dxxxi

ds
=−dU(xxx)

dxi
; i = 1, . . . ,dN. (A.3)

Requiring a solution for this set of first order differential equation amounts to a Cauchy
problem and proof of the uniqueness of its solution for Lipschitz continuous functions is
provided by the Cauchy-Lipschitz theorem [224]. Hence for the subset of points such that
∇U(xxx) ̸= 0, there exist a unique solution to Eq. (A.2). In other words, a path of steepest
descent is unique until it does not meet a stationary point since, in general, there are many
solutions terminating at a stationary point. If xxx0 is a simple saddle point, then there are only
two solutions starting from xxx0 along which the energy decreases.
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This behaviour of the solutions to Eq. (A.2) can be easily verified in the neighbourhood of
a stationary point xxx0. By aligning our dN Cartesian coordinates with the principal directions
of curvature (orthogonal transformation to normal mode coordinates) and Taylor expanding
U(xxx) around this stationary point, we write:

U(xxx0 +∆xxx) =U(xxx0)+
dN

∑
i

1
2

λi∆x2
i (A.4)

where λi is the i-th Hessian eigenvalue. The solution to Eq. (A.2) is then given by the linear
system:

dx′i
dt

=−λix′i, (A.5)

where we made a change of variables to xxx′ to drop the factor |∇U(xxx)|; note however that
xxx(s) = xxx′(t) if xxx(s0) = xxx′(t0). Solution to Eq. (A.5) is then of the form:

x′i(t) = x′(0)e−λit . (A.6)

Now suppose that the path of steepest descent starting at xxx(0) leads to a simple saddle at xxx0

with only negative eigenvalue λ1 < 0. Since the steepest descent path is now parametrised by
t, such that dt = ds/|∇U(xxx)| and |∇U(xxx)|= 0 at a stationary point, then we must consider the
limits t→±∞. There are only two curves reaching the stationary point as t→−∞, x′i(t) = 0
for all i ̸= 1 and x′1(0) either positive or negative. For t→+∞, an infinite number of steepest
descent paths with x′1(t) = 0 approach the saddle, and therefore the potential cannot decrease
along this curve as it moves away from xxx0 (these paths lie in the hyperplane perpendicular
to the coordinate x′1). Therefore, as anticipated, there are only two steepest descent paths
leading down in energy from the saddle: they are parallel to the eigenvector associated with
the only negative eigenvalue and anti-parallel to each other.

Particular care needs to be taken when saddle points have additional zero eigenvalues
other than the ones corresponding to overall translation and rotation of the system. Consider
for example the two dimensional surface:

U(x,y) =−αx2−βy2; α,β > 0. (A.7)

The origin (0,0) is a stationary point with Hessian eigenvalues −2α and 0, but the energy is
not invariant along this additional zero eigenvector as for overall translation and rotation. By
solving the linear system of differential equations for the steepest descent paths, Eq. (A.2),
one finds that an infinite number of paths of steepest descent approach the origin as t→−∞
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and an additional one for t→+∞ along the negative axis [125]. A stationary point with an
additional zero eigenvalue is known as a “degenerate” or “non-Morse” point.





Appendix B

Volume computation by the Einstein
crystal method

B.1 Einstein crystal

The harmonic potential is defined as follows:

Uhar(x|x0,k) =
k
2
|x−x0|2 =

k
2

N

∑
i
|xi−xi,0|2 (B.1)

where x0 denotes the equilibrium position, the index i denotes the i-th of N particles, each
with d degrees of freedom, and we have assumed that the spring constant k is the same for all
directions of motion. We can compute the mean squared particle displacement for a harmonic
oscillator in the canonical ensemble analytically. We start with the partition function:

ZNV T =

(
2π

βk

) dN
2

. (B.2)

We consider the free energy for the system F =−β−1 lnZ and observe that

(
∂F(k)

∂k

)

NV T
=−β

−1 ∂

∂k
lnZ =−(βZ)−1 ∂Z

∂k

=

∫
∞

−∞

dxdN 1
2
|x−x0|2e−βk|x−x0|2/2

∫
∞

−∞

dxdNe−βk|x−x0|2/2

=
1
2
⟨|x−x0|2⟩k,

(B.3)
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hence we can compute the mean squared distance for a dN-dimensional harmonic oscillator

⟨|x−x0|2⟩k = 2
(

∂F(k)
∂k

)

NV T
=

dN
βk

. (B.4)

For thermodynamic integration we are interested in the limit k→ 0. In this limit there is no
penalty for moving the system as whole, hence the mean squared displacement becomes of
the order of L2, where L is the box side length. This result means that the function ⟨|x−x0|2⟩k
will be strongly peaked at k = 0, thus making its integration difficult. For this reason, we
would like this function to vary slowly with k. This behaviour can be achieved by fixing the
centre of mass of the system, so that drifting as a whole is forbidden [151].

The centre of mass is defined as:

xCM = ∑
i

µixi, where µi =
mi

∑i mi
. (B.5)

When computing the potential energy for the harmonic spring, we must apply the following
correction:

|x(C)−x(C)
0 |2 =

N

∑
i
|x(U)

i −x(U)
i,0 −∆x(CM)

i |2, (B.6)

where i is the index for the i-th particle and C and U denote the corrected and the uncorrected
coordinates respectively. The configurational partition function requires a correction, hence
we define the corrected partition function ZCM with centre of mass fixed at xCM = 0 and note
that:

ZCM =
∫

∞

−∞

dxdNe−βk|x−x0|2/2
δ

(
∑

i
µixi

)

=

(
βk

2π ∑i µ2
i

)d/2(2π

βk

)Nd/2

=

(
βk

2π ∑i µ2
i

)d/2

Z,

(B.7)

where solution of the integral was obtained after a fair amount of algebra by rewriting the
Dirac delta as the Fourier sum δ (x) = 1/(2π3)

∫
dkexp(ikx) [147, 225].

Using Eq. (B.4) we find the mean squared displacement for the constrained Harmonic
oscillator:

⟨|x−x0|2⟩CM = 2
(

∂FCM(k)
∂k

)

NV T
=

(N−1)d
βk

. (B.8)

This result can be interpreted as the mean squared displacement of the (N−1)d harmonic
oscillator: fixing the centre of mass is equivalent to fixing one particle and integrating
Eq. (B.7) over the remaining degrees of freedom by doing the change of variables x′i = xi−xN

(conveniently with unit Jacobian) if the N-th particle is fixed.
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To conclude, let us relabel the potential as

U(x|x0,k,λ ) = (1−λ )Φ(x)+
1
2

λk|x−x0|2, (B.9)

where Φ(x) is an arbitrary field, it could be, for instance, an additional inter-atomic interaction
independent of k or, even the zero field. Let us consider the limit λ → 0: from the ratio of
the partition functions for the constrained and unconstrained centre of mass, we find:

ZCM(λ = 0)
Z(λ = 0)

=

∫
∞

−∞

dxdNe−βΦ(x)
δ (∑

i
µixi)

∫
∞

−∞

dxdNe−βΦ(x)

=

〈
δ

(
∑

i
µixi

)〉
= P(xCM = 0),

(B.10)

where δ is the Dirac delta function and P(xCM = 0) is the probability density of the centre
of mass being at 0 when λ = 0. Hence we write:

ZCM(λ = 0) = Z(λ = 0)P(xCM = 0) (B.11)

where P depends on the details of the system. If the equilibrium structure is invariant to
translations, a condition that holds true in a system with periodic boundary conditions, then
we can take P = 1/Vcell, where Vcell is the smallest repeating unit in the periodic system (unit
cell). This is at worst Vcell =Vbox, while for a fcc Einstein crystal it would correspond to the
Wigner-Seitz cell Vcell =Vbox/N [146].

B.2 Free energy calculation for solids

To compute the free energy of a system with discontinuous potential energy function (e.g.,
hard disks or hard spheres), we construct a reversible path to the corresponding Einstein
solid (see e.g. [151]). The harmonic potential with spring constant k is switched on while
maintaining the hard core interactions intact:

U(x|x0,k) =UHS(x)+Uhar(x|x0,k)

=UHS(x)+
1
2

k|x−x0|2,
(B.12)
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where x0 are the equilibrium coordinates of the Einstein crystal and UHS(x) denotes the hard
core interactions. Since the reciprocal temperature β and the coupling constant k always
appear in a product, changing β would simply renormalise the range of k’s. In what follows,
we shall assume β = 1 everywhere without loss of generality (hence, in this case, one can
think of thermodynamic integration as a “k integration”). We can then compute the free
energy difference between the Einstein crystal and the hard core system by evaluating the
integral:

FHS = Fhar(kmax)+∆F

≡ Fhar(kmax)−
∫ kmax

0
dk
〈

∂U(x|x0,k)
∂k

〉

k
.

(B.13)

As discussed in Appendix B.1, we take the centre of mass to be fixed to avoid numerical
issues in the limit k→ 0. For a system with fixed centre of mass, we write the free energy
difference between the target and the reference state as

∆F(CM) ≡ F(CM)−F(CM)
har . (B.14)

From the partition function of the Einstein crystal with fixed centre of mass, Eq. (B.7), and
for the unconstrained crystal, Eq. (B.11), we can rewrite Eq. (B.14) and rearrange it for the
free energy of the unconstrained crystal:

F = ∆F(CM)+ ln(P(xCM = 0))

+
d
2

ln
(

2π ∑i µi

kmax

)
− Nd

2
ln
(

2π

kmax

)
,

(B.15)

where the last term is Fhar and the second and third terms on the right hand side are the
CM corrections for the unconstrained and the constrained solid, respectively. For a system
with unit cell identical to the simulation box (with periodic boundary conditions), we have
P(xCM = 0) = 1/Vbox. Assuming that all particles have unit mass we can rewrite Eq. (B.15)
as

F = ∆F(CM)− ln(Vbox)−
(N−1)d

2
ln
(

2π

kmax

)
. (B.16)

We are only left with ∆F(CM), which can be found by evaluating the integral in Eq. (B.13).
In order to do so, we would like the integrand to be a well behaved function, possibly flat,
permitting Gauss-Lobatto (GL) quadrature [226]. We transform the integration variable so
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that

∆F(CM) =
∫ kmax

0

dk
g(k)

g(k)
1
2
〈
|x−x0|2

〉(CM)

k

=
∫ G−1(kmax)

G−1(0)
d
[
G−1(k)

]
g(k)

1
2
〈
|x−x0|2

〉(CM)

k ,

(B.17)

where g(k) is some function of k and G−1(k) is the primitive of the function 1/g(k).
To choose an appropriate g(k), we note that in Eq. (B.8) for very large k the mean squared

displacement for the solid is

⟨|x−x0|2⟩kmax =
(N−1)d

kmax
. (B.18)

For k other than kmax, we expect the mean squared displacement to depend on some effective
spring constant. Hence we write

〈
|x−x0|2

〉
k ≈

(N−1)d
(k+ξ )

, (B.19)

such that the mean squared displacement at k = 0 is

〈
|x−x0|2

〉
k=0 ≈

(N−1)d
ξ

, (B.20)

from which we find ξ = (N−1)d/⟨|x−x0|2⟩k=0 [note that we can self consistently replace
this definition for ξ in Eq. (B.19) to obtain an approximation for the mean squared displace-
ment at arbitrary k]. We would like the integrand g(k)⟨|x−x0|2⟩k in Eq. (B.17) to be roughly
constant. Given the considerations above we choose g(k)≈ k+ξ . One can easily verify that
the integrand is now approximately constant. We can then rewrite the integral in Eq. (B.17)
as

∆F (CM) =
∫ ln(kmax+ξ )

ln(ξ )

{
(k+ξ )

1
2
〈
|x−x0|2

〉(CM)
k

d [ln(k+ξ )]

}
.

(B.21)

Finally, to integrate Eq. (B.21) by GL quadrature, we require a variable, t, such that the
integral upper and lower bounds are [−1,1]:

t =
2ln(1+ k/ξ )−1
ln(1+ kmax/ξ )

(B.22)
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with differential
dt =

2
ln(1+ kmax/ξ )

d [ln(1+ k/ξ )] . (B.23)

Therefore we rewrite Eq. (B.21) as a function of t:

∆F (CM) =
∫ 1

−1

{
dt ln

(
1+

kmax

ξ

)

[k(t)+ξ ]
1
4
〈
|x−x0|2

〉(CM)
k

}
,

(B.24)

where k(t) can be found by rearranging Eq. (B.22). An example of the variable transform is
shown in Fig. 2.4.

It is straightforward to perform GL quadrature for a general number of abscissas n≥ 2
[226], because ∫ 1

−1
dt f (t) = w1 f (−1)+

n−1

∑
i=2

wi f (ti)+wn f (1), (B.25)

where wi are the weights and ti are the abscissas. The abscissas different from −1,1 are
the n− 2 roots of dPn−1(t)/dt, with Pn−1 a Legendre polynomial. We evaluate this sum
numerically using Numpy’s Legendre module [227]. The weights wi can also be evaluated
numerically for general n ≥ 2, since they are related to Pn−1 evaluated at ti [226]. Unless
specified otherwise, for all results in this work, we choose n = 16 abscissas.

B.3 Sampling the integrand: Hamiltonian Parallel Tem-
pering

To compute the integral in Eq. (B.24), we need to measure the integrand for different values of
k, as given by Eq. (B.22). Equilibration of the corresponding simulations can be accelerated
using extensions of the parallel tempering technique, where replicas differ in chemical
potential [215] or in the potential energy function [216, 228].

The Parallel-tempering acceptance rule for a swap of configurations between replicas
with different Hamiltonians follows from the condition of detailed balance:

acc[(xi,Ui),(x j,U j)→ (x j,Ui),(xi,U j)]

acc[(xi,U j),(x j,Ui)→ (xi,Ui),(x j,U j)]

=
exp{−β [Ui(x j)+U j(xi)]}
exp{−β [Ui(xi)+U j(x j)]}

= exp
{
−β
[(

Ui(x j)+U j(xi)
)
−
(
Ui(xi)+U j(x j)

)]}
,

(B.26)
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where acc[· → ·] denotes the swap acceptance probability. For the particular case of replicas
coupled to a reference state x0 by a harmonic potential with different coupling strengths ki,
we find the swap acceptance rule

acc[(xi,Ui),(x j,U j)→ (x j,Ui),(xi,U j)]

= min
{

1,exp[
β

2
[
(k j− ki)(|x j−x0|2−|xi−x0|2)

]}
.

(B.27)

Note that the swaps are between replicas at the same temperature β but different coupling
strengths k (although it need not be). Furthermore, we choose β = 1 without loss of generality,
as discussed in the previous section. Hamiltonian Parallel Tempering allows to achieve faster
equilibration by swapping replicas with large k, that are close to the spherical core of the
basin, with replicas with small k, that are entropically driven towards the boundaries of the
basin. Hence, the swaps prevent small-k replicas from getting stuck in remote corners of the
basin (for a discussion of the complex shape of basins of attraction see Sec. 4.3). To check
whether the replicas are well equilibrated, we consider the correlations in the “time series” of
|x−x0|k vs number of Monte Carlo steps for each replica.





Appendix C

Polydisperse hard-sphere fluid and total
accessible volume

The basins of attraction of energy minima tile the “accessible” phase space (schematically
shown in Fig. 3.1b-c). This inaccessible part of the phase space arises due to hard core
constraints and the existence of fluid and marginally stable states. We can write the total
accessible volume as

− lnVJ(N,φ) =−N lnVbox +N fex(φ)− ln pJ(φSS), (C.1)

where φ is the volume fraction, fex(φ) is the excess free energy, which is the difference in
free energy between the hard sphere fluid and the ideal gas, and pJ(φSS) is the probability of
obtaining a jammed packing at soft volume fraction φSS with our protocol (e.g. see Fig. 3.8),
which accounts for the coexisting (unjammed or marginally jammed) fluid states. We can
then define the probability of sampling the i-th packing as pi = vi/VJ , where vi is the volume
of the basin of attraction of the packing. The total number of jammed packings is given by
Ω = VJ/⟨v⟩, where ⟨v⟩ is the unbiased average basin volume.

We can compute the excess free energy by thermodynamic integration [151]. We start
by noting that ∂F/∂ (1/Vbox) =V 2

boxP and define the number density ρ = N/Vbox, hence we
write

fex(ρ) =
F(ρ)

N
− F(id)(ρ)

N
=
∫

ρ

0
dρ
′
(

P(ρ ′)−ρ ′

ρ ′2

)
. (C.2)

By noting that the volume fraction of a polydisperse system is φ = vdρ⟨σd⟩ [229], where vd

is the volume of the d-dimensional unit sphere and ⟨σd⟩ is the d-th moment of the distribution
of diameters, we can change variable and write
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fex(φ) =
F(φ)

N
− F(id)(φ)

N
=
∫

φ

0
dφ
′
(

Z(φ ′)−1
φ ′

)
, (C.3)

where Z(φ) = P/ρ is the compressibility factor (we set β = 1 everywhere).
Analytical approximations for the compressibility factors for the two and three-dimensional

polydisperse hard sphere fluid have been proposed. For the hard disk fluid we use the Santos-
Yuste-Haro (eSYH) equation of state [229]

Zpoly
eSHY(φ) =

⟨σ⟩2/⟨σ2⟩
1−2φ +(2φ0−1)φ 2/φ 2

0

+
1

1−φ

(
1− ⟨σ⟩

2

⟨σ2⟩

)
,

(C.4)

where φ0 = π/
√

12 is the crystalline close packing fraction.
For three-dimensional fluids, depending on the volume fraction, we choose two different

equations of state. For volume fraction φ > 0.5, Santos et al. [229] suggest the following
equation of state based on the Carnahan-Startling (CS) equation of state for the monodisperse
fluid:

Zpoly
eCS (φ) = 1+

[
1+φ +φ 2−φ 3

(1−φ)3 −1
]

× ⟨σ
2⟩

2⟨σ3⟩2
(
⟨σ2⟩2 + ⟨σ⟩⟨σ3⟩

)

+
φ

1−φ

[
1− ⟨σ

2⟩
⟨σ3⟩

2 (
2⟨σ2⟩2−⟨σ⟩⟨σ3⟩

)
]
.

(C.5)

For volume fractions φ ≤ 0.5 the eCSK equation of state should be preferred (based on
the Carnahan-Starling-Kolafa equation of state for the monodisperse fluid)

Zpoly
eCSK(φ) = Zpoly

eCS (φ)

+
φ 3(1−2φ)

(1−φ)3
⟨σ2⟩

6⟨σ3⟩2
(
⟨σ2⟩2 + ⟨σ⟩⟨σ3⟩

)
.

(C.6)

The excess free energy can thus be obtained by substituting one of Eq. (C.4) to (C.6) in
the integral of Eq. (C.3), which can then be evaluated numerically for the desired volume
fraction.



Appendix D

Power-law between pressure and basin
volume

A power-law relationship between the volume of the basin of attraction of a jammed packing
and its pressure was reported in Eq. (2.20). In what follows we provide insight into this
expression. We observe that distributions of negative basin log-volumes, F ≡ − lnvbasin,
and log-pressures, Λ≡ lnP, are approximately normally distributed (see Fig. 3.2 and 3.5a).
We therefore expect their joint probability to be well-approximated by a bivariate Gaussian
distribution B(φ ;F,Λ) = N (µ, σ̂)1, with mean µ = (µF ,µΛ) and covariance matrix σ̂ =

((σ2
F ,σ

2
FΛ

),(σ2
FΛ

,σ2
Λ
)) [170]. This is consistent with the elliptical distribution of points

in Figs. 2.6, 3.4. For a given random variable X , with an (observed/biased) marginal
distribution B(X), the mean is given by µX(φ) = ⟨X⟩B =

∫
XB(φ ;X)dX . Similarly, the

(biased) conditional expectation of F for a given Λ is [170]

⟨F⟩B(Ψ)(φ ;Λ)≡ E[F |φ ;Λ] =
σ2

FΛ
(φ)

σ2
Λ
(φ)

(Λ−µΛ(φ))+µF(φ). (D.1)

This is simply the linear minimum mean square error (MMSE) regression estimator for F , i.e.
the linear estimator Ŷ (X) = aX +b that minimizes E[(Y − Ŷ (X))2]. The expectation of the
dimensionless free energy ⟨F⟩B(Ψ)(φ ;Λ) =−⟨lnv⟩B(Ψ)(φ ;Λ)≥− ln⟨v⟩B(Ψ)(φ ;Λ) [230] is
the average basin negative log-volume at volume fraction φ and log-pressure Λ. Here the
average is also taken over all other relevant, but unknown, order parameters Ψ, such that
⟨F⟩B(Ψ)(φ ;Λ) =

∫
dΨB(Ψ)F(φ ;Ψ,Λ). In other words, we write the expectation of F at a

given pressure as the (biased) average over the unspecified order parameters Ψ. An example
of such a parameter would be some topological variable that makes certain topologies more

1When listing a function’s arguments we place parameters that are held constant before the semicolon
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probable than others. Note that F(φ ,Λ;Γ) is narrowly distributed around E[F |φ ;Λ]. To
simplify the notation we write ⟨F⟩B(Ψ)(φ ;Λ)≡ ⟨F⟩B(φ ;Λ). We can thus rewrite Eq. (2.20)
as

⟨ f ⟩B(φ ;Λ) =λ (φ)Λ+ c(φ)

=
σ2

f Λ
(φ)

σ2
Λ
(φ)

Λ−
σ2

f Λ
(φ)

σ2
Λ
(φ)

µΛ(φ)+µ f (φ)

=
σ2

f Λ
(φ)

σ2
Λ
(φ)

∆Λ+µ f (φ)

(D.2)

where f = F/N is the basin negative log-volume per particle and λ ≡ 1/κ is the slope
of the power-law relation, which depends crucially on the packing fraction φ . The last
equality in Eq. (D.2) highlights how λ (φ) controls the contributions of the fluctuations of the
log-pressures ∆Λ≡ Λ−µΛ(φ) to changes in the basin log-volume. Note that one can rewrite
the ratio of fluctuations as σ2

f Λ
/σ2

Λ
= ρ f Λσ f /σΛ where ρ f Λ = σ2

f Λ
/(σ f σΛ) is the linear

correlation coefficient of f and Λ. Finally, we can gain further insight into the power-law
dependence by noting that

λ (φ)≡
σ2

f Λ
(φ)

σ2
Λ
(φ)

(D.3)

c(φ)≡µ f (φ)−
σ2

f Λ
(φ)

σ2
Λ
(φ)

µΛ(φ) (D.4)



Appendix E

Data analysis

E.1 Generalised Gaussian

Assuming that the distribution of basins log-volumes U(F |N,φSS) is unimodal, which has
been verified for very small systems [32], one can fit the raw distribution B(F |N,φSS) with a
three-parameter generalised normal distribution [153, 154]

p(F |µF ,σ ,ζ )≡ ζ

2σΓ(1/ζ )
exp

[
−
( |F−µF |

σF

)ζ
]
, (E.1)

where Γ(x) is the gamma function, σ is the scale parameter, ζ is the shape parameter and
µF = ⟨F⟩ is the mean (dimensionless free energy) with variance σ2Γ(3/ζ )/Γ(1/ζ ). In the
limit ζ → 2 we recover the Gaussian distribution with standard deviation σ . In practice it
appears to be most stable to fit the empirical biased cumulative distribution function, rather
than the histogram shape [34]. Alternatively, we also tested fitting to the observed p.d.f.
with the maximum-likelihood method, obtaining consistent, but more scattered, results (see
Sec. 2.7).

E.2 Generalised log-normal

In Sec. 2.7.2 we have established a link between the pressure of a packing and the volume
of its basin of attraction, see Eq. (2.20). In order to compute the entropy as a function of
volume and pressure it is necessary to unbias the distribution of pressures with respect to
the sampling bias exp(−F). We choose to describe the distribution of pressures P using the
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generalised log-normal distribution [231]

p(P|µΛ,σ ,ζ ) =
ζ/P

2(ζ+1)/ζ σΓ(1/ζ )
exp

(
−1

2

∣∣∣∣
ln(P)−µΛ

σ

∣∣∣∣
ζ
)
, (E.2)

with the first term on the r.h.s. being the normalisation constant, Γ(x) is the gamma function,
σ is the scale parameter, ζ is the shape parameter and µΛ ≡ ⟨lnP⟩ is the mean. For ζ = 2
this distribution reduces to the log-normal distribution.

E.3 Kernel density estimate

To relax the assumption that the empirical distributions can be fitted by a symmetric (gen-
eralised Gaussian) distribution, one can also describe the distributions by kernel density
estimation (KDE) [181, 232]. A kernel K(h;x) is a positive function controlled by the
bandwidth parameter h, such that we can defined the KDE density as

pKDE(h;x) =
1

Mh

M

∑
i=1

K
(

x− xi

h

)
(E.3)

where M is the sample size. The bandwidth acts as a smoothing parameter controlling
the trade-off between bias and variance. In this work we choose the Gaussian kernel
K(h;x) ∝ exp[−x2/(2h2)]. Bandwidth selection is then done using Silverman’s rule of
thumb as the initial guess for integrated squared error cross-validation [233]. The numerical
integration step is performed, as for the generalised Gaussian description, via Eq. (2.17).

E.4 Distance based outlier detection

We remove outliers from a univariate, e.g. B( f ), or bivariate distribution, e.g. B( f ,Λ),
following the distance-based outlier removal method introduced by Knorr and Ng [152].
This is applied in turn to each dimension, such that we choose to keep only those points for
which at least R = 0.5 of the remaining data set is within D = 3σ ∨ 4σ (compared to the
much stricter R = 0.9988, D = 0.13σ required to exclude any points further than |µ−3σ |
for normally distributed data [152]). On our datasets we find that this procedure removes
typically none and at most 0.8% of all data points.
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E.5 Robust covariance estimator

Robust mean and covariance estimates of a multivariate distribution can be computed using
the Minimum Covariance Determinant (MCD) estimator [232, 234] with e.g. support fraction
h/nsamples = 0.99. The MCD estimator defines µMCD, the mean of the h observations for
which the determinant of the covariance matrix is minimal, and σ̂MCD, the corresponding
covariance matrix [235].

E.5.1 Elliptic envelope outlier detection

Outlier detection based on an elliptic (Gaussian) envelope criterion can be constructed using
the MCD estimator. We assume a support fraction h/nsamples = 0.99 and a contamination
equal to 10% [232].

E.6 Generalised sigmoid

We defined a generalised sigmoid function of the form:

f (a,b,φ0,u,w;φ) = a− a−b
(1+ e−w(φ−φ0))1/u

(E.4)





Appendix F

Connecting log-pressures to relative
pressures

In this section we relate the statistics of the log-pressures of the packings to the relative
pressures. For a given N and φ , with the set of pressures {Pi}, the log-pressures are given by
Λi ≡ lnPi and the relative pressures are Pi/⟨P⟩. The two quantities are then simply related as

ln
(

Pi

⟨P⟩

)
= lnPi− ln⟨P⟩= Λi− ln⟨P⟩. (F.1)

Using Jensen’s inequality, we have the following bound for the first moment of the log-
pressures

⟨Λ⟩= ⟨lnP⟩ ≤ ln⟨P⟩. (F.2)

Therefore ⟨P⟩ → 0 implies ⟨Λ⟩ → −∞.

F.1 Moments

In order to relate the means and the variances of Pi and Λi ≡ lnPi, we perform the Taylor
expansion

lnP = ln⟨P⟩+ d lnP
dP

∣∣∣∣
P=⟨P⟩

(P−⟨P⟩)+ ... (F.3)

We next compute the moments to leading order

⟨lnP⟩ ≈ ln⟨P⟩,

σ
2(lnP)≈ σ2(P)

⟨P⟩2 = σ
2
(

P
⟨P⟩

)
.

(F.4)
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Thus, to first order, the variance of the log-pressures is equal to the variance of the relative
pressures.

F.2 Bounds

For a fixed N and φ , the pressures of the individual packings are bounded as

0 < Pmin ≤ Pi ≤ Pmax. (F.5)

where Pmax and Pmin are determined by the packing fraction φ , independent of system size,
and are physically set limits [118, 174, 175]. We can therefore use Popoviciu’s inequality on
variances [236], yielding

σ
2(P)≤ 1

4
(Pmax−Pmin)

2 , (F.6)

which is also bounded. The relative pressure fluctuations are therefore bounded as

σ
2
(

P
⟨P⟩

)
≤ 1

4
(Pmax−Pmin)

2

⟨P⟩2 . (F.7)

We thus find that the variance of the relative pressures σ2
(

P
⟨P⟩

)
can diverge only when

⟨P⟩ → 0, which is precisely where the unjamming transition occurs.



Appendix G

Projection of volumetric density onto a
reference surface

Let us defined ν∂γ(xxx) as the projection of the (uniform) density in VΓ\γ onto a reference
surface ∂γ , such that ∫

∂γ

ν∂γ(xxx)dσ(xxx) =
∫

γ

ρ(xxx,∞)dxxx, (G.1)

where we assume that the trajectories evolve according to Eq. (5.1) and ρ(x,∞) is determined
by the continuity equation Eq. (5.2) subject to the initial condition Eq. (5.3).

Substituting the integral with respect to t of Eq. (5.2) for ρ(xxx,∞) in Eq. (G.1) and
applying the divergence theorem gives

∫

∂γ

ν∂γ(xxx)dσ(xxx)

=
∫

∂γ

[∫
∞

0
|n̂nn(xxx) ·∇∇∇U(xxx)|ρ(xxx, t)dt

]
dσ(xxx)

=
∫

Γ

[∫
∞

0
|∇∇∇g(xxx) ·∇∇∇U(xxx)|ρ(xxx, t)dt

]
δ [g(xxx)]dxxx,

(G.2)

where we have parametrized the reference region boundary ∂γ = {xxx : g(xxx) = 0}. Noting that

ρ(xxx, t) =
1

VΓ\γ

∫

Γ\γ
δ [xxx−XXX(t,yyy)]dyyy, (G.3)
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Eq. (G.2) can be written as
∫

∂γ

ν∂γ(xxx)dσ(xxx)

=
1

VΓ\γ

∫

Γ

{∫
∞

0
|∇∇∇g(xxx) ·∇∇∇U(xxx)|

×
[∫

Γ\γ
δ [xxx−XXX(t,yyy)]dyyy

]
dt
}

δ [g(xxx)]dxxx

=
1

VΓ\γ

∫
∞

0

∫

Γ\γ
|∇∇∇g[XXX(t,yyy)] ·∇∇∇U [XXX(t,yyy)]|

×δ{g[XXX(t,yyy)]}dyyydt.

(G.4)

Making the change of variable xxx = XXX(t,yyy) in Eq. (G.4) gives

∫

∂γ

ν∂γ(xxx)dσ(xxx)

=
1

VΓ\γ

∫
∞

0

∫

Γt

|∇∇∇g(xxx) ·∇∇∇U(xxx)|δ [g(xxx)]det
[

∂yyy
∂xxx

]
dxxxdt,

(G.5)

where the region Γt is given by the mapping of Γ\ γ via XXX(t, ·). Since ∂γ ⊂ Γt , we may
use the Dirac delta function δ [g(xxx)] to re-express the volume integral over Γt as a surface
integral over ∂γ . Noting also that yyy = XXX(−t,xxx) if xxx = XXX(t,yyy), and defining the Jacobian
matrix J(xxx, t)≡ ∂

∂xxxXXX(−t,xxx), we get

∫

∂γ

ν∂γ(xxx)dσ(xxx)

=
∫

∂γ

{
1

VΓ\γ
|n̂nn(xxx) ·∇∇∇U(xxx)|

∫
∞

0
det[J(xxx, t)]dt

}
dσ(xxx).

(G.6)

Since the choice of the reference region γ is arbitrary, the integrands on both sides of Eq. (G.6)
must be equal. This proves Eq. (5.4).
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