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We review a number of recently developed strategies for enhanced sam-
pling of complex systems based on knowledge of the potential energy land-
scape. We describe four approaches, replica exchange, Kirkwood sampling,
superposition-enhanced nested sampling, and basin sampling, and show how each
of them can exploit information for low-lying potential energy minima obtained
using basin-hopping global optimization. Characterizing these minima is gener-
ally much faster than equilibrium thermodynamic sampling, because large steps in
configuration space between local minima can be used without concern for main-
taining detailed balance. © 2015 John Wiley & Sons, Ltd.
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INTRODUCTION

In this contribution, we provide an overview
of recent methods that all have their basis in

enhancing the sampling of global thermodynam-
ics using knowledge of the underlying potential
energy landscape. Making these connections seems
particularly timely, as a number of potentially impor-
tant advances have been made over the last few
years, and they share some common characteris-
tics. In particular, the use of low-lying local minima
obtained from methods based on global optimisation
(Section Basin-Hopping Global Optimisation), and
the superposition approach (Section The Superposi-
tion Approach), provide some common themes. Of
course, many other methods have been proposed for
enhanced sampling,1–13 and these will not be reviewed
here. The procedures we describe, with foundations
in potential energy landscape theory14–16 and geom-
etry optimisation, are largely complementary to
approaches based on more conventional molecu-
lar dynamics and Monte Carlo (MC) schemes.17
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Future work will require benchmarking comparisons
of the most promising methods, to guide applica-
tions in different fields. For the present purposes,
the main aim is to show what has been achieved in
recent work based on the potential energy landscape
framework, and explain how these new tools are
connected.

Most of the tests we have conducted use atomic
clusters of N atoms bound by the Lennard-Jones (LJ)
potential18
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where 𝜀 and 21/6𝜎 are the pair equilibrium well depth
and separation, respectively. These systems will be
denoted LJN , and there are a number of sizes where
low temperature solid–solid phase transitions have
been identified in previous work.7–8,14,19–26 In each
case, there are competing low-energy morphologies
separated by potential energy barriers that are large
compared with kBT at the transition temperature. The
relatively simple potential makes these systems ideal
benchmarks for analysis of broken ergodicity issues,
as well as for global optimisation14,19,27 and rare event
dynamics.28–31 In principle, the same improvements
would be obtained for treatments that explicitly con-
sider electronic structure. However, the much greater
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computational expense of computing energies and gra-
dients that would be necessary mean that these oppor-
tunities have yet to be exploited.

We begin by introducing the superposition
approach (Section The Superposition Approach), a
key component in the methods under review, which
allows us to link thermodynamics to the basins of
attraction of local minima on the underlying energy
landscape. With this background in place, we review
in Section Basin-Hopping Global Optimisation the
basin-hopping (BH) strategy for global optimisation.
We then consider strategies for thermodynamic esti-
mation, including replica exchange (REX) (Section
Replica-Exchange Approaches), Kirkwood sampling
(Section Kirkwood Sampling), nested sampling (NS)
(Section Superposition-Enhanced Nested Sampling),
and basin-sampling (Section Basin-Sampling). In
these sections, we emphasize the utility of the super-
position approach in enhancing these simulations,
and provide evidence for gains in efficiency and
convergence from simulation results for benchmark
systems.

THE SUPERPOSITION APPROACH

A common theme in several of the following sections
is the superposition approach to thermodynamics,
which represents a key component of the com-
putational potential energy landscape framework.14

Here, we write the total partition function or den-
sity of states (DOS) as a sum over contributions from
the basins of attraction14,32,33 of the local minima,
which gives an explicitly ergodic representation of the
thermodynamics.8,14,34–37 As a first approximation, it
is often convenient to use harmonic vibrational den-
sities of states for the local minima. The resulting
superposition partition function is nevertheless anhar-
monic, owing to the distribution of local minima in
energy. We can therefore separate contributions to
thermodynamic properties in terms of the individual
potential wells and the sum over minima. For example,
we can identify well and landscape anharmonicity.38,39

For low temperature solid–solid equilibria, the har-
monic normal mode approximation can be quantita-
tively accurate, but methods to sample anharmonicity
are generally required if an accurate picture of melt-
ing transitions is needed. Reweighting schemes and
temperature-dependent frequencies have been consid-
ered for this purpose in previous work.35,40–43 The
most recent basin-sampling scheme44 will be outlined
in Section Basin-Sampling.

The underlying superposition representation for
the canonical partition function is

Z (T) =
Nst∑
𝛼=1

NPI
𝛼∑

𝜁=1

Z𝜁 (T) =
Nst∑
𝛼=1

NPI
𝛼

Z𝛼 (T)

= P
Nst∑
𝛼=1

Z𝛼 (T) ∕o𝛼, (2)

where Z(T), is decomposed in terms of contributions
from the catchment basin14,32 of each of the Nst

distinct local minimum structures, with Z𝛼(T) the
partition function of structure 𝛼 at temperature T,
which is identical for each of the corresponding
NPI

𝛼
permutation–inversion isomers. Here P is the

number of permutation–inversion operations of the
Hamiltonian, 2

∏
𝛽N𝛽 !, and o𝛼 is the order of the rigid

molecule point group.14,45–47

The great advantage of the superposition
approach is that we can exploit efficient methods
for locating low-lying local minima based on global
optimisation, as described in Section Basin-Hopping
Global Optimisation. BH approaches that incorpo-
rate a local minimisation19,48,49 can employ arbitrary
moves through configuration space, which can cir-
cumvent the barriers that cause ergodicity breaking
in standard MC and molecular dynamics procedures.
Superposition methods employing both harmonic
and anharmonic approximations of the vibrational
DOS have found widespread applications in molec-
ular science, and various examples are considered
in the following review. First, we outline the BH
global optimisation approach that has been used to
obtain most of the samples of low-lying potential
energy minima. We note that BH is a stochastic
procedure, so it is not guaranteed to find all the
relevant low-lying minima. However, the sampling of
local minima that does not require detailed balance
is much faster than for thermodynamic sampling
approaches, and is straightforward for the systems
considered here.

BASIN-HOPPING GLOBAL
OPTIMISATION

The thermodynamic sampling schemes described in
the following sections are of particular interest for sys-
tems involving broken ergodicity at low temperature,
where the potential energy landscape supports alter-
native low-lying morphologies separated by relatively
high barriers. Here, a ‘high’ barrier corresponds to a
value that is large compared to kBT at the tempera-
ture, T, where the structures would have equal occu-
pation probabilities, and kB is Boltzmann’s constant.
BH global optimisation19,48,49 has been successfully
employed to survey low-lying minima in a wide range
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of systems of this type, including atomic and molec-
ular clusters, biomolecules, and soft and condensed
matter.14,49,50 These applications will not be reviewed
here; since the BH procedure is now well estab-
lished an overview should be sufficient in the present
context.

The key point of the BH framework is to
couple local energy minimisation to some sort of
step-taking procedure in configuration space. Ran-
dom perturbations of the atomic coordinates some-
times work quite well, but more efficient schemes can
often be devised, which may exploit characteristics of
the system under consideration. For example, inter-
nal coordinate moves, such as Kirkwood sampling,
that respect connectivity are likely to work better for
biomolecules with a well-defined covalently bonded
framework. Numerous BH variants with alternative
step-taking schemes have now been described, and
parallel approaches using replicas at different effec-
tive temperatures have also been used.51 In each
case, the potential energy for any configuration, X,
becomes the potential energy of the local minimum
that the chosen minimisation procedure converges to
from X:

Ṽ (X) = min {V (X)} , (3)

where X is a 3N-dimensional vector for a system
of N atoms. The resulting minimum replaces the
previous structure in the chain if it satisfies a chosen
acceptance condition, and again several alternatives
have been considered. A simple Metropolis scheme
often works well, where the new minimum with
potential energy Enew is accepted if it lies below
the potential energy of the starting point, Eold. If
Enew >Eold it is accepted if exp[(Eold −Enew)/kT]
is greater than a random number drawn from the
interval [0,1]. Schemes based on thresholding,52

downhill-only moves,53 and non-Boltzmann weights54

based on Tsallis statistics55,56 have also been
described.

Much larger steps in configuration space can
be taken than for conventional molecular dynamics
or MC methods, as the energy becomes the value
after minimisation, and there is no requirement
to satisfy detailed balance. Downhill barriers are
therefore removed, and atoms can pass through
each other. In fact, there is a more subtle effect,
which facilitates sampling when broken ergodicity is
prevalent. The occupation probabilities of competing
regions of configuration space for the transformed
landscape Ṽ(X) have been found to overlap
significantly over a wider temperature range,
where moves still have a good chance of being
accepted.20,57

REPLICA-EXCHANGE APPROACHES

The local minima provided by BH can be very helpful
to understand systems exhibiting broken ergodicity.
However, if thermodynamic properties are required,
then configurations within the vicinity of each min-
imum become important, and increasingly so with
higher temperature. At temperatures where well
anharmonicity becomes noticeable, alternative tech-
niques are required for sampling the thermodynamic
state of interest. In contrast to BH, thermodynamic
sampling techniques generally require detailed balance
to be satisfied in order to ensure the correct canonical
distribution is preserved. While many long-standing
strategies exist for sampling stationary distributions,
the most notable being MC and thermostatted molec-
ular dynamics algorithms, the restriction of detailed
balance often renders such techniques inefficient or
impractical. For instance, an MC simulation with
random perturbation moves often requires a small
displacement step to achieve a useful acceptance
probability. As a result, the system only explores
its local configuration space on shorter timescales,
with large-scale rearrangements, which dominate
simulation convergence, occurring on much larger
timescales. This quite generic problem necessitates
advanced sampling strategies.

REX58,59 has emerged as a promising technique
to sample such systems exhibiting complex energy
landscapes. REX refers to a family of methods in
which M-independent copies or ‘replicas’ of a system
are simulated in parallel, typically at different temper-
atures, with occasional moves that attempt to swap
configurations between neighboring replicas. While
large energy barriers may prevent the system from
exploring its configuration space at low temperatures,
enhanced thermal fluctuations provide more rapid
barrier crossings at high temperatures. By means of
the swap attempts, the low-temperature replicas are
exposed to the wider reaches of configuration space
explored by the high-temperature replicas, providing
a means to sample on both sides of the barrier with-
out directly overcoming it. In this section, we will
focus primarily on parallel tempering (PT) in which
the replicas are defined by a progression of tempera-
tures, but methods with differing Hamiltonians exist
as well.60

The REX moves must satisfy detailed balance,
which is enforced through an acceptance probability
for the exchange attempt. For two replicas, A and
B, having the same potential energy function V but
at different temperatures TA and TB, the acceptance
probability takes the form

Pacc (X,Y) = min
{

1, eΔ𝛽ΔV} . (4)
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Here Δ𝛽 = 1/kBTB − 1/kBTA, and ΔV =V(Y)−
V(X) is the difference in potential energy of the
swap configurations X and Y in question. Equation
(4) guarantees that each replica samples its correct
equilibrium state, despite the fact that configurations
are being swapped between different thermodynamic
ensembles.

Just as detailed balance restricts the pertur-
bation step size in an MC simulation, in REX
it limits the temperate spacings between neighbor-
ing replicas. To ensure a decent average acceptance
rate ⟨Pacc⟩, the temperatures TA and TB must be
spaced closely, yet still far enough apart not to waste
computational resources on an unnecessary number
of replicas. This conflict has given rise to numer-
ous strategies to optimize various PT parameters, in
particular the temperature spacings and total number
of replicas.

Understanding a system in terms of the underly-
ing energy landscape can be particularly useful in this
respect, and recent developments have been made that
enhance PT simulations by utilizing information con-
tained in the energy landscape. These developments,
described below, exploit the harmonic superposition
approximation (HSA), a harmonic expansion of the
landscape about the known configurational minima.
Through this approximation, an approximate energy
landscape can be constructed solely from a set of min-
ima, and since the form is particularly convenient,
namely a series of multidimensional harmonic wells,
thermodynamic predictions can be easily made. In
this way, thermodynamics from the HSA can be used
to approximate the behavior of the true underlying
system.

The HSA can be exploited to determine optimal
PT temperature spacings, a crucial component in
the performance of PT simulations. In general, a
uniform acceptance profile is desired across all neigh-
boring replicas,61–66 which guarantees that replica
round-trip times are not plagued by bottlenecks as
trajectories transition between temperatures. Ballard
and Wales67 have recently demonstrated how knowl-
edge of configurational minima can be utilized to
optimize PT temperatures in this respect. By approx-
imating the canonical distribution of each replica via
the HSA, they obtained analytic expressions for the
average acceptance rate ⟨Pacc⟩ in terms of features
of the configurational minima. From these expres-
sions, a set of optimal temperatures can be uniquely
determined by matching to a target acceptance rate,
yielding a progression of replicas that has a uniform
acceptance within the approximation of the HSA.
Simulations of systems undergoing phase transforma-
tion have revealed that this strategy can yield uniform
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FIGURE 1 | Acceptance profile for REX simulation of LJ31: The
average REX acceptance probability for pair (T i , T i + 1) is plotted versus
temperature index i, for temperature spacings chosen using standard
geometric progression (empty black circles), and chosen by HSA
optimization (filled blue circles). The dip in the geometric case coincides
with a heat-capacity peak. At higher temperatures, both profiles deviate
from uniform behavior, as the HSA becomes less accurate. Results
replotted from Ref 67.

acceptance rates and efficiency enhancements over a
standard progression. Figure 1 displays the uniform
acceptance profile achieved by the method on PT
simulations of LJ31.

In addition to optimizing temperature spacings,
the HSA can also be used as a replica in itself. Man-
delshtam and coworkers7,8 have devised a REX strat-
egy whereby an auxiliary ‘reservoir’ replica is coupled
to an M-replica PT simulation. The reservoir replica
samples the HSA at a user-specified temperature, with
reservoir-temperature swap moves occurring with a
particular temperature replica. Because HSA samples
can be drawn analytically, reservoir sampling is essen-
tially barrierless and enables rapid exploration of the
system’s relevant configuration space (defined by the
known minima). In this way, the reservoir reduces
the need for high temperature replicas to overcome
barriers. Similar strategies for MC sampling employ
analogous ideas by generating trial moves near known
configurational minima.1,5

KIRKWOOD SAMPLING

Kirkwood sampling68 is a method for random (or
non-Markovian) sampling of the conformational
space of molecules. The principal challenge in ran-
dom conformational sampling is to avoid steric clashes
among the atoms. Kirkwood sampling addresses this
problem by incorporating correlations among inter-
nal coordinates, as captured by the joint probability
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distribution function (pdf) between various sets of
internal coordinates. Kirkwood sampling is based
on the generalization of the Kirkwood superposition
approximation (KSA), originally developed in the
radial distribution function theory of liquids.69,70

Analogous approximations were later developed71,72

in the mutual information theory of correlations and
provided expressions for a multidimensional pdf in
terms of its marginal pdfs corresponding to neglect
of certain correlations. The current application to
conformational sampling was motivated by confor-
mational entropy calculation of small molecules using
the mutual information expansion of entropy.73 The
simplest approximation in this family, namely the
KSA, pKSA

3 , expresses a three-dimensional pdf, p3,
in terms of its one- and two-dimensional marginal
pdfs

p3

(
x1,x2,x3

)
≈ pKSA

3

(
x1,x2,x3

)
=

p2

(
x1,x2

)
p2

(
x1,x3

)
p2

(
x2,x3

)
p1

(
x1

)
p1

(
x2

)
p1

(
x3

) ,

(5)

where p1(.) and p2(.,.) are the marginal pdfs, and
the subscript indicates the dimensionality of the pdf.
Equation (5) can be obtained from the mutual infor-
mation expansion of Shannon entropy of p3 by
dropping the threefold mutual information.68,73 The
KSA can be generalized to express an N-dimensional
pdf in terms of its marginals of highest order l.73

For instance, the doublet level (l= 2) superposition
approximation is given by the ratio of the product of
2-D and 1-D marginal pdfs

pN ≈ p(2)
N

(
x1, … ,xN

)
=

∏
i<j

p2

(
xi,xj

)
∏

i

p1

(
xi

) , (6)

where the superscript ‘(2)’ denotes doublet level.
Equation 6 accounts for pairwise correlations among
all variables but ignores the higher-order correlations.
Approximations that account for selected correlations
of different orders can also be derived.74 Equation 6
is fully coupled and therefore exact sampling would
be computationally prohibitive for high-dimensional
systems. The Kirkwood approach addresses this issue
by sequential sampling of the variables such that each
one is selected from a one-dimensional conditional
distribution conditioned on the previously sampled
variables. The conditional distributions are obtained
using the appropriate superposition approximation.
For example, given a sequence of variables, the condi-
tional pdf for the k-th variable given values of previous

k− 1 variables, using the doublet level approximation
(Eq. 6), is

p(2)
1

(
xk

||x1, ..,xk−1

)
=

p(2)
k

(
x1, ..,xk−1,xk

)
p(2)

k−1

(
x1, ..,xk−1

)

= 1
nk

∏
1≤j≤k−1

p2

(
xj,xk

)
p1

(
xk

)k−2
, (7)

where the normalization nk can be computed numer-
ically. The doublet-level Kirkwood scheme effectively
samples from the N-dimensional pdf

p̃(2)
N

(−→x)
= p2

(
x1,x2

) ∏
3≤k≤N

p(2)
1

(
xk

||x1,x2, ..,xk−1

)
,

(8)
and not from Eq. 6. Thus, at the doublet level, the
sequence of approximations for the true distribution,
pN, is

pN → p(2)
N → p̃(2)

N . (9)

Note that both the doublet level Kirkwood
approximation, p(2)

N , and the doublet-level sampling
distribution, p̃(2)

N , involve a product of all singlet and
doublet pdfs. Due to this product form, a sampled
conformation is guaranteed to fall in the nonzero
probability cells of all input pdfs. This construction
ensures that all correlations are satisfied simultane-
ously. The computational complexity of a Kirkwood
sampling algorithm is proportional to the number of
pdfs used. As the number of doublet-level marginals
are N(N+1)/2, the doublet-level sampling algorithm
has the complexity of O(N2).

Doublet- and triplet-level Kirkwood sampling
has been applied to small drug-like molecules68 and
small peptides75 with up to 52 atoms. In these stud-
ies, bond-angle-torsion76 internal coordinate system
was used and the input pdfs were populated using
high-temperature MD simulation data and were effec-
tively marginal pdfs of the Boltzmann distribution
at the simulation temperature. Figure 2 shows that
the majority of the conformations generated by dou-
blet level sampling for alanine tetrapeptide (N=150)
had energies similar to those of conformations sam-
pled by the original MD simulation. In other words,
the doublet-level Kirkwood sampling distribution is a
good approximation of the original Boltzmann distri-
bution. These studies suggest that accounting for just
the low-order correlations is sufficient for avoiding
steric clashes at the local level, e.g., between adjacent
residues of a peptide.

We note that due to high dimensionality
and neglect of the higher-order correlations the
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FIGURE 2 | Doublet-level Kirkwood sampling results for 52-atom
tetra alanine peptide. The input singlet and doublet pdfs were
populated using 5 million conformations from a 500-ns vacuum MD
simulation performed at 1000 K. (a) The backbone (blue tube) of 100
Kirkwood sampled conformations aligned on the backbone atoms; one
conformation is also shown in licorice. Potential energy for a million
Kirkwood samples was computed using the MD energy function. (b) The
energy distribution of the Kirkwood samples (crosses) overlaid on the
Boltzmann energy distribution obtained from the MD simulation
(unmarked). The two distributions have substantial overlap indicating
overlap of the Kirkwood sampled and MD-sampled conformational
space.

conformational space accessible to Kirkwood sam-
pling will be much larger than that sampled in the
original MD simulation. In Figure 2, this observation
is reflected in the shift of the Kirkwood energy distri-
bution to higher energies since more conformations
are available at higher energies. Unlike MD simu-
lations, Kirkwood sampling generates uncorrelated
samples. Furthermore, it is a geometrical sampling
method, independent of the potential energy function,
and therefore provides barrierless global sampling for
any potential energy surface.

In the context of biomolecular simulations,
performance of other methods described in this
contribution can be enhanced by employing Kirkwood
sampling for step taking. For enhanced sampling of
local minima, Kirkwood samples could be used

for seeding independent BH simulations. Kirkwood
samples can also be used for generating the initial
replicas for NS simulations. As the normalized proba-
bility of generating a Kirkwood sample is available, a
key advantage over knowledge-based conformational
samplers,77 Kirkwood sampling can also be combined
with thermodynamic sampling algorithms that require
detailed balance to be satisfied. We next discuss two
approaches (Somani et al., unpublished data) for
obtaining Boltzmann distributed conformations from
Kirkwood sampling.

The first approach utilizes the biased MC17

framework with the Kirkwood sampling distribution
as the biasing distribution. Here Kirkwood samples
are used as trial moves and the Metropolis acceptance
function is modified to reweight according to the
Boltzmann distribution. For example, if doublet-level
Kirkwood sampling is used (Eq. 8), the Metropolis
acceptance function is given by

Pacc

(
Xn,Xo

)
= min

(
1,

e−𝛽U(Xn;𝛽)∕p̃(2)
N

(
Xn

)
e−𝛽U(Xo;𝛽)∕p̃(2)

N

(
Xo

)
)

,

(10)
where Xn is the new trial conformation and Xo is the
old conformation. The energy U(Xn; 𝛽) includes a con-
tribution due to the Jacobian, J(X), of transformation
from internal to Cartesian coordinate system

U (X; 𝛽) ≡ V (X) − 1
𝛽

ln J (X) , (11)

where V is the potential energy, typically specified
by a molecular mechanics forcefield. In contrast to
standard perturbation move MC algorithms that are
sequential, the moves in biased MC are independent
of the current conformation. Consequently, no equili-
bration is required and the algorithm can be trivially
parallelized in a distributed computing environment.
Furthermore, as Kirkwood sampling is a geometrical
sampling approach, the same set of Kirkwood sam-
ples may be reweighted to generate Boltzmann distri-
butions for different potential energy functions and
temperatures.

We have applied (Somani et al., unpublished
data) doublet Kirkwood-biased MC simulation to a
model system with nine atoms and a bonded chain
topology. The input pdfs were generated using data
from a 500-K MD simulation and biased MC simu-
lations were performed at successively lower temper-
atures of 500 K, 400 K, 300 K, and 200 K. Biased MC
simulations were able to generate Boltzmann distri-
butions at the MD temperature as well as at lower
temperatures, though the acceptance ratios fell with
reduced temperatures (Figure 3), consistent with the
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FIGURE 3 | Biased MC simulations for a nine-atom chain molecule
using doublet-level Kirkwood sampling distribution as the biasing
distribution. Distribution of energy from one million step biased MC
simulations (black unmarked line) performed at T = 500, 400, 300, and
200 K, is overlaid on the corresponding reference Boltzmann
distributions (in blue unmarked lines). The distribution of energy of the
Kirkwood samples is marked by boxes. The acceptance ratio for the
different simulations was 0.29, 0.25, 0.07, and 0.009 for T = 500, 400,
300, and 200 K, respectively. These results show that this approach can
generate Boltzmann distributions even at temperatures lower than that
of the original MD simulation used to populate the input pdfs.

lower overlap. One can imagine an iterative scheme
where the initial set of pdfs is constructed in a man-
ner that provides coverage of a wide conformational
space. For instance, the pdfs could be populated using
high temperature MD, or using a database of confor-
mations from structural databases78,79 or a pdf library
for molecular fragments. Given this initial set of pdfs
and a potential energy function, one could potentially
perform successive stages of biased MC simulations
and repopulation of the pdfs to reach arbitrarily low
temperatures. Note that, for a given potential energy
function and temperature, the acceptance ratio of the
Kirkwood biased MC simulation is completely deter-
mined by the input pdfs and provides a direct measure
of the overlap between the Kirkwood sampling distri-
bution and the target Boltzmann distribution. A given
acceptance ratio would impose a lower limit on the
temperatures for which biased MC simulations can
be run.

Due to the product form of the Kirkwood sam-
pling distribution, if there are zero probability cells
in the input pdfs then certain regions of the con-
figurational space will not be accessible. As a result
Kirkwood sampling will not be ergodic, although the
eliminated regions are likely to correspond to con-
formations with atom clashes. For thermodynamic

sampling, non-ergodicity can be compensated by com-
bining Kirkwood sampling with Markovian samplers,
such as MD, or perturbation move MC which explore
the conformational space in the vicinity of the cur-
rent conformation. This exploration is accomplished
using the Kirkwood sampler as a reservoir in a reser-
voir REX simulation. The acceptance function for
exchanging between Kirkwood reservoir and a tem-
perature replica is given by

Pacc

(
X𝛽 ,Xr

)
= min

(
1,

p̃(2)
N

(
X𝛽

)
p̃(2)

N

(
Xr

) e𝛽(U(X𝛽 ;𝛽)−U(Xr;𝛽))
)

,

(12)
where X𝛽 is the conformation from a temperature
replica and Xr is reservoir conformation, here drawn
from a Kirkwood sampling distribution. The doublet
Kirkwood distribution is used in Eq. (12) for illus-
tration. Note that the acceptance function involves
the reservoir probability of the conformation from the
temperature replica as well as the potential energy of
the reservoir conformation. Tests on the nine-atom
model system show (Figure 4) improved convergence
when a Kirkwood reservoir is employed.

As in the case of biased MC, the acceptance ratio
for exchanges with the reservoir is determined by the
overlap of the Kirkwood distribution and the Boltz-
mann distribution for the coupled temperature replica.
Note that in the absence of a reservoir the highest
temperature in an REX simulation needs to be high
enough to overcome the energy barriers and avoid
trapping. By coupling to a Kirkwood reservoir, the
highest temperature would be dictated by the desired
exchange acceptance ratio. Depending on the input
pdfs used, Kirkwood dictated highest replica temper-
ature may be lower than the highest temperature dic-
tated by the barriers on the energy landscape. Indeed,
if the reservoir has good overlap with the Boltzmann
distribution corresponding to the temperature of inter-
est, then just a single replica would suffice. In this case,
the temperature replica essentially performs local sam-
pling, while the reservoir facilitates global sampling
of the conformational space. One can also imagine a
REX simulation where the highest temperature replica
is coupled to a Kirkwood reservoir to facilitate global
sampling and the lowest temperature is coupled to an
HSA reservoir constructed from the low-energy min-
ima to enable rapid equilibration over the low-energy
regions of the energy landscape.

SUPERPOSITION-ENHANCED NESTED
SAMPLING

NS is an importance sampling method that was
recently introduced in the Bayesian statistics
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FIGURE 4 | Potential energy distributions (lines marked by circles) from the 5× 106 steps temperature replica exchange simulations (a) without
and (b) with a doublet-level Kirkwood reservoir. The replica temperatures are 20 (black), 30 (red), 50 (blue), and 100 K (green). The distributions from
the Kirkwood reservoir simulation are much closer to the reference distributions (unmarked lines), indicating improved convergence upon coupling to
a reservoir.

community80 and has since been applied in a vari-
ety of fields, including astrophysics,81,82 systems
biology,83 and statistical physics.84–86 NS was origi-
nally described in the language of Bayesian statistics,
but can equally be applied to thermodynamic sam-
pling. The Bayesian prior is the uniform distribution
over all of phase space (every point in phase space
equally likely). The integral over phase space is per-
formed, weighted by the likelihood, which is simply
the Boltzmann weight exp(−V(X)/T). In the execu-
tion of NS, the value of the likelihood is unimportant;
only the ordering matters, which means that the
energy can be used as a proxy for the Boltzmann
weight, making NS independent of temperature. The
primary output of NS is the DOS, from which it is
possible to compute thermodynamic quantities at any
temperature.

Nested sampling proceeds by iteratively con-
structing a list of energy levels

{
Emax

1 , … ,Emax
N

}
which are sorted, so that Emax

i > Emax
i+1 . These energy

levels have the special property that the volume of
phase space with energy below Emax

i satisfies, on aver-
age

Ω
(
E < Emax

i

)
= 𝛼Ω

(
E < Emax

i−1

)
, (13)

where 0<𝛼 < 1 is determined by a parameter of the
algorithm (Eq. 15). From this result, the density of
states, gi, the normalized phase space volume with
energy between Emax

i and Emax
i−1 is constructed as

gi =
Ω
(
E < Emax

i−1

)
− Ω

(
E < Emax

i

)
Ω0

= 𝛼i−1 − 𝛼i, (14)

where Ω0 is the total phase space volume.
The NS algorithm begins by generating K config-

urations of the system (replicas) distributed randomly
and uniformly within phase space Ω0. For systems
with infinite phase space volume the system can be
placed in a box. Alternatively, one can limit phase
space by placing an upper bound on the energy. Either
way, the actual value of Ω0 is only a normalization
constant and does not come into the definition of the
DOS. The energies of the replicas are computed and
stored in a list {E1, … , EK}. The key insight of NS,
is that the energy of the replica with the maximum
energy (Emax

1 ) satisfies equation 13 as Ω
(
E < Emax

1

)
≈

𝛼Ω0 with the compression factor

𝛼 = K
K + 1

. (15)
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This result can be understood by laying out every point
in phase space on a one-dimensional line and sorting
them by energy. The ‘volume’ of the line is just the
length, and goes from 0 (leftmost) to Ω0 (rightmost).
The K replicas are distributed randomly and uniformly
on that line. The replica with the largest energy will be
the rightmost replica. If K points are placed on a unit
line, the position of the point with the largest value
will be distributed according to

pK (x) ∼ xK−1, (16)

with expectation value K/(K+1). Thus, the mean
position of the right-most replica is Ω0K/(K+ 1), that
also corresponds to Ω

(
E < Emax

1

)
.

We now remove the replica with the maximum
energy and replace it with a new replica sampled uni-
formly from with the volume Ω

(
E < Emax

1

)
. This is

typically done by initializing the new replica at the
position of one of the others and walking it via an
MC Markov chain for sufficient steps that it loses
its memory of the starting location. We now again
have K replicas sampled uniformly from the volume
Ω
(
E < Emax

1

)
. Thus, using the same arguments as

before, the energy of the maximum energy replica
is saved as Emax

2 , and satisfies Eq. 13. This proce-
dure is iterated until some stopping condition is met
(Figure 5).

A major benefit of NS is that, although phase
space is divided into energy bins, as in Eq. 14, the
energy bins are determined adaptively via the con-
stant compression factor 𝛼 =K/(K+ 1). This stepping
procedure automatically creates higher resolution
for low-energy regions of phase space and in regions
where phase space volume is changing most rapidly,
which usually applies near phase transitions. This fea-
ture of adaptively determined bin sizes is in contrast
with the energy bins in the Wang-Landau method,3

and the temperature spacing in PT, which must
be predetermined, although a method for choos-
ing the temperature spacing was presented in Section
Replica-Exchange Approaches. In fact, Brewer et al.86

introduced diffusive NS, which uses the energy bins
and weights gi produced by NS as input to the
Wang-Landau method to refine the estimate for
the DOS.

The vast majority of the computation time in
NS is spent generating new configurations sampled
uniformly from the space Ω

(
E < Emax

i

)
. As discussed

above, the standard way of achieving this goal is
using an MC walk long enough so that the replica
loses memory of where it started. Uniform sampling
is maintained by accepting every step subject only to
the criterion that the new energy is less than Emax

i .

FIGURE 5 | The nested sampling procedure is illustrated for a
two-dimensional energy landscape where darker colors indicate lower
energies. The image is drawn after 26 iterations of the nested sampling
procedure. The circles represent the replica positions (K = 15), which
are distributed uniformly in the two-dimensional space. The lines are
constant energy contours at Emax

i for each iteration i. The cross gives the
location of the highest energy replica, which defines Emax for the next
iteration. The dotted line is the path of the MC walk of the newly
generated replica, which is shown as a solid circle. The lower panel
shows the one-dimensional representation of phase space, which is
used to derive the compression factor of Eqs 13 and 15. In this
configuration, there are no replicas in the basin with the global
minimum, which will cause the density of states to be overestimated.
This major drawback of the NS algorithm can be overcome by
superposition enhanced nested sampling if the basin-hopping
procedure correctly identifies the relevant low-lying minima.

This technique can lead to serious sampling problems
for multimodal energy landscapes. If two minima have
energy less than Emax

i , but the minimum energy path
between them lies above Emax

i , then an MC walk
started in one basin will never reach the other. This
problem is partially alleviated by the fact that there
are many independent replicas. As long as there are
sufficient replicas in each basin then the statistics
should not be affected too much. However if, through
statistical fluctuations, one basin is devoid of replicas,
it will never become repopulated. This issue is most
likely to cause serious problems in systems where
the basin with the global minimum is narrow and
separated by large energy barriers from the rest of
phase space. Examples of such difficult systems are
LJ31, LJ38, and LJ75.85

New methods for uniform sampling with a
likelihood (or energy) constraint are actively being
developed.86 Here we describe a recent method that
uses ideas from potential energy landscape theory to
speed up sampling and overcome the problem of being
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FIGURE 6 | Heat capacity curves for LJ31. HSA corresponds to the harmonic superposition approximation. All NS and SENS calculations were
performed using K = 20, 000 replicas.

locked out of basins, namely superposition-enhanced
NS (SENS).87

SENS combines the strength of global optimisa-
tion algorithms with that of NS to achieve an aug-
mented exploration of the low energy regions of the
energy landscape, while maintaining all the desir-
able properties of NS. Global optimisation algorithms,
such as BH (Section Basin-Hopping Global Optimi-
sation), are much more efficient at finding the low
energy configurations by virtue of a greater freedom
to use energy minimisation algorithms and MC moves
that do not respect detailed balance. The collection
of minimum energy configurations thus obtained can
be used to augment the exploration of the energy
landscape performed by NS. SENS contributes knowl-
edge of this collection of low-energy configurations
via Hamiltonian REX (HREM).88,89 Similar in spirit
to PT, HREM moves are proposed between configu-
rations sampled using different Hamiltonians (energy
functions), rather than sampling configurations with
the same Hamiltonian, but weighted at different tem-
peratures, as in PT.

In this particular instance, similar in spirit to
Ref 89, a minimum is selected from the precomputed
collection of minima weighted by their HSA config-
urational volume and a swap is proposed between
a configuration Xhar, sampled uniformly within its

harmonic basin of attraction, and a configuration Xsys,
sampled by an MC walk using the system Hamiltonian
under a certain energy constraint Emax. If

Hhar

(
Xsys

)
≤ Emax and Hsys

(
Xhar

)
≤ Emax, (17)

then the true and the HSA distribution of states over-
lap and the swap is accepted. HREM moves are typ-
ically followed by conventional MC walks to further
explore neighboring regions of configurational space.
The acceptance of such HREM moves depends heav-
ily on how well the HSA approximates the underlying
potential energy surface and so does the efficiency of
SENS over that of NS. While the HSA captures land-
scape anharmonicity, arising from the distribution of
local minima, it does not include well anharmonicity,
thus becoming an increasingly good approximation at
lower energies. For this reason, we expect that only
the low-energy minima will contribute significantly to
augmenting the sampling.

An example of a very successful application of
SENS is found for the thermodynamic analysis of LJ31,
where the method has been shown to be at least one
order of magnitude more efficient that PT and NS.87 In
Figure 6, we show results for the heat capacity curve of
LJ31; for K= 20, 000 replicas SENS is well converged
and agrees with the HSA at low temperatures, while
for NS the low-temperature peak is completely absent.
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FIGURE 7 | Comparison of heat-capacity curves for LJ31 obtained by exact SENS using different numbers of replicas. The PT and HSA curves were
obtained by parallel tempering and the harmonic superposition approximation, respectively. Figure reproduced from Ref 87.

In Figure 7, we show a comparison of PT, HSA, and
exact SENS for a range of replica numbers (see Table 1
for details). SENS can accurately reproduce the low
temperature features of the heat capacity for as low
as K=2500 replicas, representing an improvement in
performance of 20 times over PT.87 The benefits are
not as great for LJ75 where even reaching the region
where the HSA becomes accurate enough for swaps to
be accepted is challenging.

An approximate version of the method has
been proposed to alleviate this problem: similar
in spirit to the basin-sampling approach (Section
Basin Sampling), approximate-SENS interpolates
between the high energy DOS obtained by NS and the
low-energy DOS provided by the HSA. Once at low
energy, this interpolation can be achieved by starting
a fraction of the MC walks from a local minimum
configuration sampled from the precomputed collec-
tion of minima weighted by their HSA volume. The
transition from the conventional sampling at high
energy to the enhanced sampling at low energy is
controlled by an onset function. The choice of the
energy at which the transition should occur is practi-
cally the only additional parameter when compared
to exact SENS and NS. Approximate-SENS is easy
to implement and generally yields equally good or

TABLE 1 Comparison of Methods Used to Obtain the LJ31

Heat-Capacity Curves Shown in Figures 6 and 7

LJ31

Method K N N(total)
E

PT 1.9× 1011

NS85 280, 000 3.4× 1012

SENS approx 20, 000 10, 000 1× 1011

SENS exact 20, 000 10, 000 1× 1011

SENS exact 10, 000 10, 000 5.2× 1010

SENS exact 5000 10, 000 2.6× 1010

SENS exact 2500 10, 000 1.3× 1010

N(total)
E indicates the total number of energy evaluations (summed over

all processors). PT was performed using 24 replicas spread geometrically
through the temperature range of 0.0125–0.6. Note that, although not shown,
approximate SENS can perform as well as exact SENS when fewer replicas
are used, results for LJ75 illustrate clearly the capabilities of the method.87

N(tot)
E = N ×𝒫 × Niter is the total number of energy evaluations, where N is

the length of each Monte Carlo walk, 𝒫 is the number of processors used,
and Niter is the total number of nested sampling iterations.

better results than exact SENS, although it is formally
biased.

The thermodynamic analysis of LJ75 by
approximate-SENS converges in about O(1011)
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energy evaluations, unlike PT, which has been
shown to never converge on conventional simulation
timescales. The SENS methods are therefore another
viable solution to tackle systems exhibiting broken
ergodicity.

BASIN-SAMPLING

The recently described44 basin-samping procedure is
perhaps the most efficient scheme currently available
for sampling global thermodynamic properties. This
approach combines knowledge of low-lying local min-
ima on the potential energy landscape with PT, to
connect densities of states that are relevant in the
low and high temperature regimes. A two-dimensional
histogram of probabilities is constructed using the
instantaneous potential energy and the energy of local
minima obtained by regular quenching. An approxi-
mate anharmonic functional form is then fitted to the
results corresponding to energy bins for the distribu-
tion of local minima on the landscape. This construc-
tion has the additional benefit that it can be employed

to calculate the potential energy density of both local
minimum structures and permutation–inversion iso-
mers, as well as estimates of the total number of struc-
tures and isomers on the landscape.

The regular quenching that does not affect
the instantaneous coordinates in the Markov chain
provides statistics for the number of visits to quench
potential energy bin q with potential energy VQ

q
from instantaneous potential energy bin i in replica
r, denoted by 𝒩iqr. The canonical probability
distribution

P
(

VI
i ,V

Q
q ,Tr

)
= 𝒩iqr∕𝒩r ∝ Ωc

(
VI

i ,V
Q
q

)
e−VI

i ∕kBTr ,

(18)
is then obtained by minimising

𝜒2
2D =

∑
r

∑
i

∑
q

𝒩iqr

[
lnΩc

(
VI

i ,V
Q
q

)

− ln

(
𝒩iqre

VI
i ∕kBTrZc

(
Tr

)
𝒩r

)]2

, (19)
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FIGURE 8 | Heat capacity as a function of reduced temperature for LJ75.44 The lowest and second-lowest minima based on a Marks decahedron
and an incomplete Mackay icosahedron are illustrated on the left and right of the low-temperature heat-capacity peak, respectively. The atoms are
coloured according to their contribution to the total energy: the most tightly bound atoms are blue, the least tightly bound are red, with intermediate
binding energies in green. The curve-marked PT is for the parallel tempering data only from the BSPT run. The inset shows a magnification of the
low-temperature peak corresponding to the solid–solid transition and a comparison with the harmonic superposition result. The curves marked
BSPT+ result when the original statistics are combined with longer runs aimed at converging the potential energy densities of local minima, and
provide a consistency check.
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FIGURE 9 | LJ75 probability distribution P(Q6, T) and the
corresponding free energy surface F(Q6, T)=− kBT ln P(Q6, T) for a
database containing 8,391,630 structures.44 Four structures are
illustrated, namely the global minimum (decahedron, Q6 = 0.31), the
lowest minima based upon icosahedral packing with anti-Mackay and
Mackay overlayers94 (Q6 = 0.02 and 0.15, respectively), and a minimum
associated with the liquid-like phase (Q6 = 0.10).

where the variables are Ωc

(
VI

i ,V
Q
q

)
if we fix

Zc

(
Tr

)
= Z∗

c

(
Tr

)
from an initial 1D fit to the PT

results for the distribution P (V,T) ∝ Ωc (V) e−V∕kBT .
Here Ωc(V) is again the configurational DOS. For
each replica r with temperature Tr, we count the
number of visits, 𝒩ir, to potential energy bins indexed
as VI

i , providing the estimate for P
(
VI

i ,Tr

)
as

P
(
VI

i ,Tr

)
= 𝒩ir∕𝒩r, (20)

where 𝒩r =
∑

i 𝒩ir is the total number of MC steps
for replica r. We then minimise
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FIGURE 10 | Calculated values for the ln Mst(V ) and ln MPI(V )/2N !
as a function of potential energy for LJ75.

44 Mst(V ) and MPI(V ) are the
potential energy densities of distinct local minima structures and
permutation–inversion isomers, respectively.

𝜒2
1D =

∑
r

∑
i

𝒩ir

[
lnΩc

(
VI

i

)

− ln

(
𝒩ire

VI
i ∕kBTrZc

(
Tr

)
𝒩r

)]2

, (21)

where the variables are Ωc

(
VI

i

)
and Zc(Tr). The opti-

mal values are denoted by Ω∗
c

(
VI

i

)
and Z∗

c

(
Tr

)
.

In this work, all the fitting was conducted by
minimising 𝜒2

2D or 𝜒2
1D using the modified lim-

ited memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm90,91 from the GMIN code.92

To simplify the fitting, a model anharmonic
DOS was employed for each quench bin, and an
efficient representation was obtained using two fitting
parameters, Aq and Bq, with

lnΩc

(
VI

i ,V
Q
q

)
=
(
𝜅′ + eAqViq

)
ln Viq + Bq, (22)

where 𝜅′ = 𝜅/2− 1 and Viq = VI
i − VQ

q , the difference
between the instantaneous and quench potential ener-
gies. Here we have built on previous work40 that used
the analytic DOS for a Morse potential.93 For Viq →0,

we recover the usual harmonic result: Ωc

(
VI

i ,V
Q
q

)
∝

V𝜅∕2−1
iq . Aq makes no contribution in this limit, and can

therefore be identified with the effective well anhar-
monicity, while Bq incorporates the landscape entropy
in terms of the number of minima included in quench
bin q. This interpretation facilitates the calculation of
distributions for the potential energy density of mini-
mum energy structures.44

Optimal values for the two parameters in each
bin were again obtained by fitting, and are denoted A∗

q

Volume 5, May/June 2015 © 2015 John Wiley & Sons, Ltd. 285



Overview wires.wiley.com/wcms

and B∗
q. Then to exploit additional information corre-

sponding to the low temperature limit a normal mode
analysis of the local minima obtained from BH global
optimisation was used. B∗

q values were simply replaced
up to a specified potential energy threshold using the
normal mode data, and the final configurational DOS,
Ωc

(
VI

i

)
, was obtained by combining the results of the

one- and two-dimensional fitting procedures as:

Ωc

(
VI

i

)
=
∑

q

[
𝛿qΩ∗

c

(
VI

i

) 𝒩iq

𝒩i

+
(
1 − 𝛿q

)
Ω

∗
c

(
VI

i ,V
Q
q

)]
, (23)

where the mixing parameter 𝛿q =
(
i − iqmin

)
∕(

imax
q − imin

q

)
depends on the optimal fitting range

for the q bins.44

Extensive tests were conducted for both LJ31
and LJ75. Some results for the larger cluster are
illustrated in Figures 8–10. Here Q6 is a bond-order
parameter,95,96 which takes larger values of the deca-
hedral global minimum than for minima based upon
icosahedral packing. Thirty-two temperature replicas
were used, exponentially spaced in the temperature
range of 0.15–0.375. The production run of 200×106

standard PT steps followed by 60×106 BSPT steps
(PT with quenches every 30 steps) required 22 h of
wall clock time. When the lowest 13 minima are
used to replace the fitted B∗

q values the resulting
heat capacity curve appears to be well converged
(Figure 8, with the characteristic low-temperature
solid–solid peak well reproduced. This result can
be compared with previous simulations using an
auxiliary harmonic superposition reference,7 which
required 3× 109 steps. In contrast, even 1011 MC
steps are not enough to converge the heat capacity
using adaptive exchange PT.8,89 The corresponding
probability distribution P(Q6, T) and free-energy

surface are shown in Figure 9, where various fea-
tures corresponding to different families of structures
can be associated with peaks that are separated in
these two-dimensional projections. The calculated
potential energy distributions of distinct structures
and permutation-inversion isomers are shown in
Figure 10. Here the effect of point group symmetry
in reducing the number of permutation–inversion
isomers is visible at low energy. There is also an
unexpected feature, namely a shallow minimum in
the distributions around V =−385 𝜀, which has been
associated with regions of the potential energy land-
scape that are relatively sparsely populated.44 The
total number of distinct local minimum structures
for this cluster is estimated at around 4×1025

.
44 The

capability of basin-sampling to yield estimates like this
as a by-product of the sampling could be particularly
interesting for amorphous systems in future studies.

CONCLUSIONS

The idea of exploiting knowledge of low-lying local
minima to enhance sampling1,5 recently reached
fruition in a variety of new techniques.7,38,44,67,87 The
foundation for each of these methods is the superpo-
sition approach, in which the total partition function
is decomposed into contributions from distinct local
minima.8,14,34–37 The continuing development of
these methods provides important cross-validations
of results for challenging systems that exhibit broken
ergodicity. These results are not only important in
themselves, but also provide an essential platform
for optimising efficiency, which is likely to come
from hybrid schemes, and may be system dependent.
Nevertheless, many general conclusions should hold
for very diverse problems in chemical physics, and
important tests in molecular simulation and soft and
condensed matter problems should reveal that further
progress is possible.
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